Sample stimuli
How to use
from brainscore_vision import load_benchmark
benchmark = load_benchmark("ObjectNet-top1")
score = benchmark(my_model)
Model scores
Min Alignment
Max Alignment
|
Rank |
Model |
Score |
|---|---|---|
| 1 |
.513
|
|
| 2 |
.499
|
|
| 3 |
.491
|
|
| 4 |
.443
|
|
| 5 |
.365
|
|
| 6 |
.346
|
|
| 7 |
.324
|
|
| 8 |
.316
|
|
| 9 |
.309
|
|
| 10 |
.305
|
|
| 11 |
.304
|
|
| 12 |
.297
|
|
| 13 |
.294
|
|
| 14 |
.293
|
|
| 15 |
.291
|
|
| 16 |
.285
|
|
| 17 |
.277
|
|
| 18 |
.272
|
|
| 19 |
.270
|
|
| 20 |
.266
|
|
| 21 |
.265
|
|
| 22 |
.265
|
|
| 23 |
.265
|
|
| 24 |
.265
|
|
| 25 |
.264
|
|
| 26 |
.264
|
|
| 27 |
.264
|
|
| 28 |
.263
|
|
| 29 |
.257
|
|
| 30 |
.257
|
|
| 31 |
.256
|
|
| 32 |
.256
|
|
| 33 |
.251
|
|
| 34 |
.250
|
|
| 35 |
.249
|
|
| 36 |
.247
|
|
| 37 |
.243
|
|
| 38 |
.241
|
|
| 39 |
.241
|
|
| 40 |
.239
|
|
| 41 |
.234
|
|
| 42 |
.232
|
|
| 43 |
.231
|
|
| 44 |
.226
|
|
| 45 |
.225
|
|
| 46 |
.224
|
|
| 47 |
.223
|
|
| 48 |
.221
|
|
| 49 |
.221
|
|
| 50 |
.220
|
|
| 51 |
.216
|
|
| 52 |
.216
|
|
| 53 |
.215
|
|
| 54 |
.213
|
|
| 55 |
.211
|
|
| 56 |
.209
|
|
| 57 |
.207
|
|
| 58 |
.205
|
|
| 59 |
.191
|
|
| 60 |
.190
|
|
| 61 |
.187
|
|
| 62 |
.187
|
|
| 63 |
.182
|
|
| 64 |
.177
|
|
| 65 |
.176
|
|
| 66 |
.174
|
|
| 67 |
.173
|
|
| 68 |
.165
|
|
| 69 |
.165
|
|
| 70 |
.165
|
|
| 71 |
.163
|
|
| 72 |
.162
|
|
| 73 |
.159
|
|
| 74 |
.158
|
|
| 75 |
.155
|
|
| 76 |
.154
|
|
| 77 |
.147
|
|
| 78 |
.144
|
|
| 79 |
.133
|
|
| 80 |
.132
|
|
| 81 |
.132
|
|
| 82 |
.128
|
|
| 83 |
.126
|
|
| 84 |
.126
|
|
| 85 |
.125
|
|
| 86 |
.122
|
|
| 87 |
.120
|
|
| 88 |
.118
|
|
| 89 |
.115
|
|
| 90 |
.111
|
|
| 91 |
.107
|
|
| 92 |
.106
|
|
| 93 |
.105
|
|
| 94 |
.100
|
|
| 95 |
.097
|
|
| 96 |
.097
|
|
| 97 |
.095
|
|
| 98 |
.095
|
|
| 99 |
.093
|
|
| 100 |
.092
|
|
| 101 |
.090
|
|
| 102 |
.089
|
|
| 103 |
.089
|
|
| 104 |
.089
|
|
| 105 |
.089
|
|
| 106 |
.083
|
|
| 107 |
.075
|
|
| 108 |
.072
|
|
| 109 |
.071
|
|
| 110 |
.070
|
|
| 111 |
.069
|
|
| 112 |
.069
|
|
| 113 |
.069
|
|
| 114 |
.069
|
|
| 115 |
.069
|
|
| 116 |
.068
|
|
| 117 |
.068
|
|
| 118 |
.063
|
|
| 119 |
.061
|
|
| 120 |
.054
|
|
| 121 |
.052
|
|
| 122 |
.040
|
|
| 123 |
.040
|
|
| 124 |
.038
|
|
| 125 |
.035
|
|
| 126 |
.033
|
|
| 127 |
.026
|
|
| 128 |
.019
|
|
| 129 |
.009
|
|
| 130 |
.001
|
|
| 131 |
.000
|
|
| 132 |
.000
|
|
| 133 |
.000
|
|
| 134 |
|
|
| 135 |
|
|
| 136 |
|
|
| 137 |
|
|
| 138 |
|
|
| 139 |
|
|
| 140 |
|
|
| 141 |
|
|
| 142 |
|
|
| 143 |
|
|
| 144 |
|
|
| 145 |
|
|
| 146 |
|
|
| 147 |
|
|
| 148 |
|
|
| 149 |
|
|
| 150 |
|
|
| 151 |
|
|
| 152 |
|
|
| 153 |
|
|
| 154 |
|
|
| 155 |
|
|
| 156 |
|
|
| 157 |
|
|
| 158 |
|
|
| 159 |
|
|
| 160 |
|
|
| 161 |
|
|
| 162 |
|
|
| 163 |
|
|
| 164 |
|
|
| 165 |
|
|
| 166 |
|
|
| 167 |
|
|
| 168 |
|
|
| 169 |
|
|
| 170 |
|
|
| 171 |
|
|
| 172 |
|
|
| 173 |
|
|
| 174 |
|
|
| 175 |
|
|
| 176 |
|
|
| 177 |
|
|
| 178 |
|
|
| 179 |
|
|
| 180 |
|
|
| 181 |
|
|
| 182 |
|
|
| 183 |
|
|
| 184 |
|
|
| 185 |
|
|
| 186 |
|
|
| 187 |
|
|
| 188 |
|
|
| 189 |
|
|
| 190 |
|
|
| 191 |
|
|
| 192 |
|
|
| 193 |
|
|
| 194 |
|
|
| 195 |
|
|
| 196 |
|
|
| 197 |
|
Benchmark bibtex
@inproceedings{DBLP:conf/nips/BarbuMALWGTK19,
author = {Andrei Barbu and
David Mayo and
Julian Alverio and
William Luo and
Christopher Wang and
Dan Gutfreund and
Josh Tenenbaum and
Boris Katz},
title = {ObjectNet: {A} large-scale bias-controlled dataset for pushing the
limits of object recognition models},
booktitle = {NeurIPS 2019},
pages = {9448--9458},
year = {2019},
url = {https://proceedings.neurips.cc/paper/2019/hash/97af07a14cacba681feacf3012730892-Abstract.html},
}
Ceiling
1.00.Note that scores are relative to this ceiling.
Data: ObjectNet
Metric: top1