Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("ObjectNet-top1")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.513
2
.499
3
.491
4
.443
5
.365
6
.346
7
.324
8
.316
9
.309
10
.305
11
.304
12
.297
13
.294
14
.293
15
.291
16
.285
17
.277
18
.272
19
.270
20
.266
21
.265
22
.265
23
.265
24
.265
25
.264
26
.264
27
.264
28
.263
29
.257
30
.257
31
.256
32
.256
33
.251
34
.250
35
.249
36
.247
37
.243
38
.241
39
.241
40
.239
41
.234
42
.232
43
.231
44
.226
45
.225
46
.224
47
.223
48
.221
49
.221
50
.220
51
.216
52
.216
53
.215
54
.213
55
.211
56
.209
57
.207
58
.205
59
.191
60
.190
61
.187
62
.187
63
.182
64
.177
65
.176
66
.174
67
.173
68
.165
69
.165
70
.165
71
.163
72
.162
73
.159
74
.158
75
.155
76
.154
77
.147
78
.144
79
.133
80
.132
81
.132
82
.128
83
.126
84
.126
85
.125
86
.122
87
.120
88
.118
89
.115
90
.111
91
.107
92
.106
93
.105
94
.100
95
.097
96
.097
97
.095
98
.095
99
.093
100
.092
101
.090
102
.089
103
.089
104
.089
105
.089
106
.083
107
.075
108
.072
109
.071
110
.070
111
.069
112
.069
113
.069
114
.069
115
.069
116
.068
117
.068
118
.063
119
.061
120
.054
121
.052
122
.040
123
.040
124
.038
125
.035
126
.033
127
.026
128
.019
129
.009
130
.001
131
.000
132
.000
133
.000
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Benchmark bibtex

@inproceedings{DBLP:conf/nips/BarbuMALWGTK19,
                                                    author    = {Andrei Barbu and
                                                                David Mayo and
                                                                Julian Alverio and
                                                                William Luo and
                                                                Christopher Wang and
                                                                Dan Gutfreund and
                                                                Josh Tenenbaum and
                                                                Boris Katz},
                                                    title     = {ObjectNet: {A} large-scale bias-controlled dataset for pushing the
                                                                limits of object recognition models},
                                                    booktitle = {NeurIPS 2019},
                                                    pages     = {9448--9458},
                                                    year      = {2019},
                                                    url       = {https://proceedings.neurips.cc/paper/2019/hash/97af07a14cacba681feacf3012730892-Abstract.html},
                                                    }

Ceiling

1.00.

Note that scores are relative to this ceiling.

Data: ObjectNet

Metric: top1