Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021highpass-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.875
2
.858
3
.851
4
.827
5
.812
6
.807
7
.806
8
.793
9
.722
10
.716
11
.709
12
.652
13
.592
14
.550
15
.550
16
.506
17
.493
18
.457
19
.442
20
.422
21
.419
22
.410
23
.404
24
.380
25
.367
26
.364
27
.355
28
.330
29
.305
30
.303
31
.294
32
.293
33
.291
34
.287
35
.285
36
.262
37
.248
38
.226
39
.220
40
.202
41
.200
42
.195
43
.189
44
.177
45
.176
46
.175
47
.154
48
.151
49
.150
50
.149
51
.143
52
.142
53
.139
54
.139
55
.139
56
.139
57
.135
58
.132
59
.131
60
.127
61
.123
62
.120
63
.118
64
.116
65
.116
66
.116
67
.111
68
.110
69
.101
70
.100
71
.100
72
.100
73
.096
74
.096
75
.095
76
.095
77
.095
78
.095
79
.094
80
.093
81
.093
82
.092
83
.091
84
.091
85
.090
86
.090
87
.089
88
.089
89
.088
90
.088
91
.086
92
.085
93
.083
94
.083
95
.082
96
.081
97
.081
98
.080
99
.079
100
.078
101
.078
102
.077
103
.075
104
.075
105
.075
106
.075
107
.075
108
.075
109
.075
110
.075
111
.074
112
.074
113
.073
114
.073
115
.073
116
.073
117
.072
118
.072
119
.072
120
.071
121
.071
122
.066
123
.066
124
.066
125
.065
126
.064
127
.064
128
.064
129
.063
130
.062
131
.061
132
.060
133
.060
134
.060
135
.059
136
.059
137
.059
138
.059
139
.056
140
.056
141
.056
142
.055
143
.055
144
.055
145
.055
146
.055
147
.055
148
.054
149
.054
150
.054
151
.054
152
.053
153
.053
154
.053
155
.053
156
.052
157
.052
158
.051
159
.051
160
.051
161
.051
162
.050
163
.050
164
.050
165
.050
166
.050
167
.049
168
.049
169
.048
170
.048
171
.048
172
.047
173
.046
174
.046
175
.046
176
.045
177
.045
178
.045
179
.045
180
.045
181
.045
182
.045
183
.045
184
.045
185
.045
186
.045
187
.045
188
.045
189
.044
190
.044
191
.043
192
.043
193
.043
194
.043
195
.043
196
.043
197
.042
198
.042
199
.042
200
.041
201
.041
202
.040
203
.040
204
.040
205
.039
206
.038
207
.038
208
.038
209
.038
210
.037
211
.037
212
.037
213
.036
214
.036
215
.036
216
.036
217
.035
218
.035
219
.035
220
.034
221
.033
222
.033
223
.033
224
.033
225
.033
226
.032
227
.031
228
.031
229
.031
230
.030
231
.030
232
.030
233
.030
234
.030
235
.030
236
.028
237
.027
238
.027
239
.026
240
.026
241
.026
242
.024
243
.024
244
.023
245
.023
246
.023
247
.023
248
.023
249
.022
250
.022
251
.022
252
.022
253
.022
254
.022
255
.021
256
.021
257
.020
258
.020
259
.019
260
.019
261
.019
262
.019
263
.018
264
.016
265
.015
266
.015
267
.015
268
.015
269
.015
270
.015
271
.015
272
.015
273
.014
274
.014
275
.014
276
.013
277
.013
278
.013
279
.012
280
.012
281
.010
282
.010
283
.010
284
.010
285
.010
286
.010
287
.009
288
.007
289
.005
290
.004
291
.004
292
.004
293
.004
294
.003
295
.003
296
.003
297
.002
298
.002
299
.001
300
-0.030
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.44.

Note that scores are relative to this ceiling.

Data: Geirhos2021highpass

Metric: error_consistency