Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021phasescrambling-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.734
2
.730
3
.677
4
.624
5
.621
6
.612
7
.606
8
.600
9
.599
10
.596
11
.584
12
.576
13
.576
14
.572
15
.567
16
.562
17
.561
18
.521
19
.512
20
.511
21
.511
22
.506
23
.503
24
.499
25
.478
26
.462
27
.459
28
.448
29
.442
30
.431
31
.419
32
.416
33
.404
34
.404
35
.383
36
.382
37
.378
38
.376
39
.372
40
.367
41
.364
42
.363
43
.363
44
.361
45
.350
46
.347
47
.344
48
.342
49
.339
50
.338
51
.331
52
.320
53
.312
54
.308
55
.307
56
.289
57
.289
58
.289
59
.286
60
.273
61
.269
62
.268
63
.267
64
.256
65
.251
66
.250
67
.250
68
.250
69
.249
70
.247
71
.246
72
.223
73
.222
74
.222
75
.219
76
.214
77
.210
78
.209
79
.207
80
.202
81
.195
82
.192
83
.189
84
.183
85
.182
86
.181
87
.179
88
.177
89
.170
90
.168
91
.165
92
.162
93
.161
94
.161
95
.159
96
.158
97
.156
98
.154
99
.153
100
.153
101
.151
102
.150
103
.148
104
.147
105
.146
106
.145
107
.145
108
.144
109
.142
110
.141
111
.138
112
.137
113
.134
114
.134
115
.133
116
.130
117
.129
118
.125
119
.123
120
.123
121
.120
122
.120
123
.119
124
.118
125
.118
126
.118
127
.118
128
.116
129
.114
130
.114
131
.114
132
.114
133
.114
134
.114
135
.112
136
.112
137
.111
138
.111
139
.110
140
.110
141
.109
142
.108
143
.108
144
.107
145
.107
146
.104
147
.101
148
.101
149
.100
150
.100
151
.097
152
.094
153
.094
154
.094
155
.094
156
.093
157
.091
158
.091
159
.091
160
.090
161
.090
162
.089
163
.089
164
.087
165
.084
166
.084
167
.083
168
.083
169
.081
170
.081
171
.080
172
.080
173
.080
174
.080
175
.079
176
.079
177
.079
178
.077
179
.076
180
.075
181
.074
182
.073
183
.069
184
.069
185
.069
186
.068
187
.067
188
.067
189
.066
190
.066
191
.066
192
.063
193
.060
194
.060
195
.060
196
.060
197
.060
198
.060
199
.060
200
.060
201
.060
202
.060
203
.060
204
.060
205
.060
206
.060
207
.060
208
.060
209
.060
210
.059
211
.059
212
.057
213
.057
214
.055
215
.055
216
.054
217
.052
218
.052
219
.051
220
.051
221
.051
222
.051
223
.050
224
.049
225
.048
226
.048
227
.048
228
.047
229
.047
230
.045
231
.045
232
.044
233
.044
234
.042
235
.041
236
.041
237
.040
238
.040
239
.037
240
.034
241
.033
242
.033
243
.033
244
.032
245
.032
246
.031
247
.031
248
.030
249
.030
250
.029
251
.029
252
.029
253
.029
254
.029
255
.028
256
.028
257
.027
258
.027
259
.025
260
.024
261
.023
262
.023
263
.023
264
.022
265
.022
266
.020
267
.019
268
.019
269
.019
270
.018
271
.018
272
.017
273
.017
274
.016
275
.016
276
.015
277
.014
278
.013
279
.013
280
.012
281
.012
282
.011
283
.010
284
.009
285
.008
286
.007
287
.007
288
.006
289
.006
290
.006
291
.005
292
.005
293
.005
294
.003
295
.003
296
.002
297
.001
298
.001
299
.001
300
.001
301
.000
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.45.

Note that scores are relative to this ceiling.

Data: Geirhos2021phasescrambling

Metric: error_consistency