Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021powerequalisation-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.755
2
.718
3
.713
4
.709
5
.707
6
.707
7
.705
8
.680
9
.672
10
.670
11
.668
12
.651
13
.650
14
.647
15
.638
16
.633
17
.599
18
.592
19
.586
20
.579
21
.564
22
.560
23
.548
24
.540
25
.501
26
.494
27
.489
28
.486
29
.482
30
.472
31
.468
32
.467
33
.462
34
.455
35
.453
36
.451
37
.450
38
.427
39
.427
40
.427
41
.397
42
.388
43
.382
44
.380
45
.378
46
.363
47
.339
48
.335
49
.323
50
.317
51
.317
52
.315
53
.307
54
.295
55
.292
56
.289
57
.289
58
.287
59
.287
60
.280
61
.278
62
.269
63
.269
64
.260
65
.260
66
.257
67
.248
68
.246
69
.245
70
.237
71
.234
72
.228
73
.227
74
.222
75
.221
76
.217
77
.217
78
.216
79
.214
80
.209
81
.201
82
.197
83
.195
84
.193
85
.190
86
.189
87
.189
88
.187
89
.186
90
.186
91
.185
92
.184
93
.182
94
.181
95
.181
96
.173
97
.169
98
.167
99
.164
100
.159
101
.155
102
.149
103
.147
104
.145
105
.145
106
.140
107
.134
108
.133
109
.132
110
.132
111
.128
112
.127
113
.127
114
.126
115
.125
116
.125
117
.125
118
.122
119
.121
120
.119
121
.119
122
.118
123
.116
124
.115
125
.114
126
.113
127
.112
128
.108
129
.107
130
.105
131
.105
132
.100
133
.098
134
.098
135
.098
136
.098
137
.098
138
.098
139
.097
140
.097
141
.097
142
.097
143
.097
144
.097
145
.097
146
.097
147
.097
148
.097
149
.097
150
.096
151
.096
152
.095
153
.094
154
.094
155
.094
156
.093
157
.091
158
.090
159
.089
160
.089
161
.089
162
.088
163
.088
164
.088
165
.086
166
.085
167
.084
168
.083
169
.083
170
.083
171
.083
172
.083
173
.082
174
.082
175
.078
176
.078
177
.078
178
.076
179
.075
180
.075
181
.073
182
.070
183
.070
184
.068
185
.065
186
.065
187
.065
188
.064
189
.064
190
.063
191
.062
192
.062
193
.062
194
.062
195
.060
196
.059
197
.059
198
.057
199
.053
200
.053
201
.053
202
.053
203
.053
204
.053
205
.052
206
.050
207
.048
208
.047
209
.047
210
.046
211
.045
212
.044
213
.043
214
.041
215
.041
216
.040
217
.040
218
.040
219
.040
220
.039
221
.039
222
.038
223
.038
224
.038
225
.038
226
.038
227
.037
228
.037
229
.037
230
.037
231
.036
232
.036
233
.036
234
.035
235
.035
236
.034
237
.034
238
.034
239
.033
240
.033
241
.033
242
.033
243
.032
244
.032
245
.031
246
.031
247
.031
248
.031
249
.031
250
.030
251
.029
252
.028
253
.027
254
.027
255
.027
256
.026
257
.024
258
.024
259
.023
260
.023
261
.023
262
.021
263
.021
264
.020
265
.020
266
.019
267
.019
268
.019
269
.018
270
.018
271
.017
272
.016
273
.015
274
.015
275
.014
276
.014
277
.014
278
.014
279
.013
280
.012
281
.012
282
.011
283
.011
284
.011
285
.010
286
.010
287
.010
288
.009
289
.008
290
.007
291
.006
292
.006
293
.005
294
.004
295
.003
296
.003
297
.003
298
.002
299
.002
300
.001
301
.000
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.51.

Note that scores are relative to this ceiling.

Data: Geirhos2021powerequalisation

Metric: error_consistency