Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021uniformnoise-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.781
2
.754
3
.743
4
.734
5
.731
6
.728
7
.723
8
.720
9
.719
10
.686
11
.685
12
.675
13
.674
14
.670
15
.661
16
.647
17
.647
18
.645
19
.639
20
.637
21
.635
22
.627
23
.627
24
.617
25
.614
26
.604
27
.601
28
.601
29
.599
30
.591
31
.590
32
.587
33
.583
34
.577
35
.576
36
.576
37
.572
38
.555
39
.537
40
.524
41
.522
42
.520
43
.520
44
.515
45
.509
46
.493
47
.493
48
.476
49
.475
50
.473
51
.462
52
.458
53
.455
54
.443
55
.441
56
.418
57
.404
58
.401
59
.386
60
.381
61
.377
62
.354
63
.348
64
.344
65
.340
66
.338
67
.330
68
.328
69
.322
70
.309
71
.309
72
.309
73
.289
74
.289
75
.285
76
.284
77
.279
78
.272
79
.266
80
.265
81
.260
82
.257
83
.257
84
.254
85
.253
86
.250
87
.250
88
.249
89
.245
90
.244
91
.243
92
.231
93
.231
94
.224
95
.209
96
.209
97
.202
98
.196
99
.194
100
.194
101
.194
102
.194
103
.194
104
.188
105
.188
106
.183
107
.182
108
.180
109
.179
110
.174
111
.173
112
.172
113
.172
114
.166
115
.162
116
.162
117
.157
118
.157
119
.156
120
.153
121
.149
122
.144
123
.143
124
.137
125
.136
126
.134
127
.133
128
.132
129
.131
130
.130
131
.130
132
.129
133
.127
134
.127
135
.125
136
.122
137
.121
138
.121
139
.121
140
.119
141
.119
142
.116
143
.112
144
.105
145
.105
146
.103
147
.099
148
.098
149
.097
150
.091
151
.090
152
.089
153
.089
154
.089
155
.088
156
.088
157
.088
158
.088
159
.088
160
.088
161
.088
162
.080
163
.079
164
.079
165
.078
166
.078
167
.078
168
.077
169
.076
170
.075
171
.075
172
.075
173
.073
174
.073
175
.071
176
.069
177
.068
178
.068
179
.067
180
.067
181
.067
182
.064
183
.062
184
.061
185
.061
186
.059
187
.059
188
.058
189
.058
190
.057
191
.057
192
.057
193
.057
194
.057
195
.056
196
.056
197
.054
198
.054
199
.050
200
.049
201
.049
202
.049
203
.049
204
.048
205
.048
206
.048
207
.048
208
.047
209
.047
210
.047
211
.046
212
.046
213
.046
214
.046
215
.046
216
.045
217
.045
218
.045
219
.044
220
.044
221
.043
222
.043
223
.041
224
.041
225
.040
226
.039
227
.039
228
.038
229
.038
230
.038
231
.038
232
.038
233
.038
234
.038
235
.038
236
.038
237
.038
238
.038
239
.038
240
.038
241
.038
242
.038
243
.038
244
.036
245
.036
246
.036
247
.036
248
.036
249
.035
250
.034
251
.034
252
.034
253
.033
254
.033
255
.031
256
.031
257
.030
258
.028
259
.028
260
.027
261
.027
262
.026
263
.024
264
.024
265
.023
266
.022
267
.022
268
.022
269
.022
270
.021
271
.021
272
.020
273
.017
274
.016
275
.016
276
.013
277
.011
278
.011
279
.011
280
.010
281
.010
282
.009
283
.008
284
.006
285
.006
286
.006
287
.005
288
.005
289
.005
290
.005
291
.004
292
.004
293
.003
294
.003
295
.002
296
.001
297
.000
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.43.

Note that scores are relative to this ceiling.

Data: Geirhos2021uniformnoise

Metric: error_consistency