Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021uniformnoise-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.781
2
.754
3
.743
4
.734
5
.731
6
.728
7
.723
8
.720
9
.719
10
.686
11
.685
12
.675
13
.674
14
.670
15
.661
16
.647
17
.647
18
.645
19
.639
20
.637
21
.635
22
.627
23
.627
24
.617
25
.614
26
.604
27
.601
28
.601
29
.599
30
.591
31
.590
32
.587
33
.583
34
.577
35
.576
36
.576
37
.572
38
.555
39
.537
40
.524
41
.522
42
.520
43
.520
44
.515
45
.509
46
.493
47
.493
48
.476
49
.475
50
.473
51
.462
52
.458
53
.455
54
.443
55
.441
56
.418
57
.404
58
.401
59
.386
60
.381
61
.377
62
.354
63
.348
64
.344
65
.340
66
.338
67
.330
68
.328
69
.322
70
.309
71
.309
72
.309
73
.289
74
.289
75
.285
76
.284
77
.282
78
.279
79
.272
80
.266
81
.265
82
.260
83
.257
84
.257
85
.254
86
.253
87
.250
88
.250
89
.249
90
.245
91
.244
92
.243
93
.231
94
.231
95
.224
96
.209
97
.209
98
.202
99
.196
100
.194
101
.194
102
.194
103
.194
104
.194
105
.188
106
.188
107
.183
108
.182
109
.180
110
.179
111
.174
112
.173
113
.172
114
.172
115
.166
116
.162
117
.162
118
.157
119
.157
120
.156
121
.153
122
.149
123
.144
124
.143
125
.137
126
.136
127
.134
128
.133
129
.132
130
.131
131
.130
132
.130
133
.129
134
.127
135
.127
136
.125
137
.122
138
.121
139
.121
140
.121
141
.119
142
.119
143
.116
144
.112
145
.105
146
.105
147
.103
148
.099
149
.098
150
.097
151
.091
152
.090
153
.089
154
.089
155
.089
156
.088
157
.088
158
.088
159
.088
160
.088
161
.088
162
.088
163
.080
164
.079
165
.079
166
.078
167
.078
168
.078
169
.077
170
.076
171
.075
172
.075
173
.075
174
.073
175
.073
176
.071
177
.069
178
.068
179
.068
180
.067
181
.067
182
.067
183
.064
184
.062
185
.061
186
.061
187
.059
188
.059
189
.058
190
.058
191
.057
192
.057
193
.057
194
.057
195
.057
196
.056
197
.056
198
.054
199
.054
200
.050
201
.049
202
.049
203
.049
204
.049
205
.048
206
.048
207
.048
208
.048
209
.047
210
.047
211
.047
212
.046
213
.046
214
.046
215
.046
216
.046
217
.045
218
.045
219
.045
220
.044
221
.044
222
.043
223
.043
224
.041
225
.041
226
.040
227
.039
228
.039
229
.038
230
.038
231
.038
232
.038
233
.038
234
.038
235
.038
236
.038
237
.038
238
.038
239
.038
240
.038
241
.038
242
.038
243
.038
244
.038
245
.036
246
.036
247
.036
248
.036
249
.036
250
.035
251
.034
252
.034
253
.034
254
.033
255
.033
256
.031
257
.031
258
.030
259
.028
260
.028
261
.027
262
.027
263
.026
264
.024
265
.024
266
.023
267
.022
268
.022
269
.022
270
.022
271
.021
272
.021
273
.020
274
.017
275
.016
276
.016
277
.013
278
.011
279
.011
280
.011
281
.010
282
.010
283
.009
284
.008
285
.006
286
.006
287
.006
288
.005
289
.005
290
.005
291
.005
292
.004
293
.004
294
.003
295
.003
296
.002
297
.001
298
.000
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.43.

Note that scores are relative to this ceiling.

Data: Geirhos2021uniformnoise

Metric: error_consistency