Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Hermann2020cueconflict-shape_match")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.550
2
.527
3
.515
4
.506
5
.497
6
.495
7
.482
8
.461
9
.439
10
.432
11
.432
12
.432
13
.427
14
.415
15
.415
16
.412
17
.404
18
.393
19
.380
20
.372
21
.359
22
.355
23
.353
24
.347
25
.339
26
.331
27
.326
28
.321
29
.314
30
.310
31
.301
32
.299
33
.299
34
.297
35
.293
36
.287
37
.277
38
.277
39
.274
40
.274
41
.270
42
.268
43
.267
44
.265
45
.265
46
.264
47
.260
48
.258
49
.257
50
.256
51
.255
52
.251
53
.249
54
.247
55
.244
56
.241
57
.241
58
.240
59
.239
60
.238
61
.237
62
.237
63
.234
64
.233
65
.228
66
.224
67
.224
68
.221
69
.219
70
.217
71
.217
72
.216
73
.209
74
.208
75
.208
76
.207
77
.207
78
.207
79
.206
80
.206
81
.206
82
.205
83
.205
84
.205
85
.203
86
.201
87
.199
88
.199
89
.197
90
.196
91
.195
92
.195
93
.193
94
.193
95
.192
96
.192
97
.191
98
.188
99
.188
100
.188
101
.188
102
.185
103
.185
104
.184
105
.184
106
.183
107
.182
108
.182
109
.182
110
.182
111
.182
112
.182
113
.181
114
.181
115
.181
116
.180
117
.180
118
.180
119
.177
120
.176
121
.174
122
.173
123
.172
124
.172
125
.172
126
.172
127
.172
128
.170
129
.170
130
.170
131
.170
132
.168
133
.167
134
.166
135
.166
136
.165
137
.165
138
.165
139
.164
140
.164
141
.164
142
.164
143
.163
144
.163
145
.163
146
.163
147
.163
148
.162
149
.161
150
.161
151
.161
152
.160
153
.160
154
.159
155
.158
156
.158
157
.158
158
.157
159
.157
160
.157
161
.157
162
.156
163
.155
164
.155
165
.154
166
.154
167
.154
168
.152
169
.152
170
.152
171
.152
172
.152
173
.151
174
.151
175
.151
176
.151
177
.151
178
.151
179
.151
180
.151
181
.151
182
.151
183
.148
184
.147
185
.147
186
.147
187
.146
188
.145
189
.145
190
.144
191
.144
192
.142
193
.142
194
.142
195
.141
196
.141
197
.141
198
.141
199
.139
200
.139
201
.138
202
.138
203
.138
204
.138
205
.137
206
.137
207
.137
208
.136
209
.136
210
.136
211
.136
212
.135
213
.134
214
.134
215
.133
216
.133
217
.133
218
.133
219
.133
220
.130
221
.130
222
.130
223
.129
224
.129
225
.128
226
.128
227
.128
228
.126
229
.124
230
.124
231
.123
232
.123
233
.122
234
.122
235
.122
236
.122
237
.122
238
.119
239
.119
240
.117
241
.117
242
.116
243
.113
244
.111
245
.110
246
.109
247
.107
248
.105
249
.099
250
.089
251
.088
252
.084
253
.078
254
.076
255
.076
256
.074
257
.072
258
.071
259
.069
260
.065
261
.065
262
.064
263
.064
264
.064
265
.064
266
.062
267
.062
268
.062
269
.062
270
.062
271
.062
272
.062
273
.062
274
.061
275
.060
276
.059
277
.048
278
.045
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

Benchmark bibtex

@article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }

Ceiling

1.00.

Note that scores are relative to this ceiling.

Data: Hermann2020cueconflict

Metric: shape_match