Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Hermann2020cueconflict-shape_match")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.550
2
.527
3
.515
4
.506
5
.497
6
.495
7
.482
8
.461
9
.439
10
.432
11
.432
12
.432
13
.427
14
.415
15
.415
16
.412
17
.404
18
.393
19
.380
20
.372
21
.359
22
.355
23
.353
24
.347
25
.339
26
.331
27
.326
28
.321
29
.314
30
.310
31
.301
32
.299
33
.299
34
.297
35
.293
36
.287
37
.277
38
.277
39
.274
40
.274
41
.270
42
.268
43
.267
44
.265
45
.265
46
.264
47
.260
48
.258
49
.257
50
.256
51
.255
52
.251
53
.249
54
.247
55
.244
56
.241
57
.241
58
.240
59
.239
60
.238
61
.237
62
.237
63
.234
64
.233
65
.228
66
.224
67
.224
68
.221
69
.219
70
.217
71
.217
72
.216
73
.209
74
.208
75
.208
76
.207
77
.207
78
.207
79
.206
80
.206
81
.206
82
.205
83
.205
84
.205
85
.203
86
.201
87
.199
88
.199
89
.197
90
.196
91
.195
92
.195
93
.193
94
.193
95
.192
96
.192
97
.191
98
.188
99
.188
100
.188
101
.188
102
.185
103
.185
104
.184
105
.184
106
.183
107
.182
108
.182
109
.182
110
.182
111
.182
112
.182
113
.181
114
.181
115
.181
116
.180
117
.180
118
.180
119
.177
120
.176
121
.174
122
.173
123
.172
124
.172
125
.172
126
.172
127
.172
128
.172
129
.170
130
.170
131
.170
132
.170
133
.168
134
.167
135
.166
136
.166
137
.165
138
.165
139
.165
140
.164
141
.164
142
.164
143
.164
144
.163
145
.163
146
.163
147
.163
148
.163
149
.162
150
.161
151
.161
152
.161
153
.160
154
.160
155
.159
156
.158
157
.158
158
.158
159
.157
160
.157
161
.157
162
.157
163
.156
164
.155
165
.155
166
.154
167
.154
168
.154
169
.152
170
.152
171
.152
172
.152
173
.152
174
.151
175
.151
176
.151
177
.151
178
.151
179
.151
180
.151
181
.151
182
.151
183
.151
184
.148
185
.147
186
.147
187
.147
188
.146
189
.145
190
.145
191
.144
192
.144
193
.142
194
.142
195
.142
196
.141
197
.141
198
.141
199
.141
200
.139
201
.139
202
.138
203
.138
204
.138
205
.138
206
.137
207
.137
208
.137
209
.136
210
.136
211
.136
212
.136
213
.135
214
.134
215
.134
216
.133
217
.133
218
.133
219
.133
220
.133
221
.130
222
.130
223
.130
224
.129
225
.129
226
.128
227
.128
228
.128
229
.126
230
.124
231
.124
232
.123
233
.123
234
.122
235
.122
236
.122
237
.122
238
.122
239
.119
240
.119
241
.117
242
.117
243
.116
244
.113
245
.111
246
.110
247
.109
248
.107
249
.105
250
.099
251
.089
252
.088
253
.084
254
.078
255
.076
256
.076
257
.074
258
.072
259
.071
260
.069
261
.065
262
.065
263
.064
264
.064
265
.064
266
.064
267
.062
268
.062
269
.062
270
.062
271
.062
272
.062
273
.062
274
.062
275
.061
276
.060
277
.059
278
.048
279
.045
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

Benchmark bibtex

@article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }

Ceiling

1.00.

Note that scores are relative to this ceiling.

Data: Hermann2020cueconflict

Metric: shape_match