Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Hermann2020cueconflict-shape_match")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.550
2
.527
3
.515
4
.506
5
.497
6
.495
7
.482
8
.461
9
.461
10
.461
11
.461
12
.439
13
.432
14
.432
15
.432
16
.427
17
.415
18
.415
19
.412
20
.404
21
.393
22
.380
23
.372
24
.359
25
.355
26
.353
27
.347
28
.339
29
.331
30
.326
31
.321
32
.314
33
.310
34
.301
35
.299
36
.299
37
.297
38
.293
39
.287
40
.277
41
.277
42
.274
43
.274
44
.270
45
.268
46
.267
47
.265
48
.265
49
.264
50
.260
51
.258
52
.257
53
.256
54
.255
55
.251
56
.249
57
.247
58
.244
59
.241
60
.241
61
.240
62
.239
63
.238
64
.237
65
.237
66
.234
67
.233
68
.228
69
.224
70
.224
71
.221
72
.219
73
.217
74
.217
75
.216
76
.209
77
.208
78
.208
79
.207
80
.207
81
.207
82
.206
83
.206
84
.206
85
.205
86
.205
87
.205
88
.203
89
.201
90
.199
91
.199
92
.197
93
.196
94
.195
95
.195
96
.193
97
.193
98
.192
99
.192
100
.191
101
.188
102
.188
103
.188
104
.188
105
.185
106
.185
107
.184
108
.184
109
.183
110
.182
111
.182
112
.182
113
.182
114
.182
115
.182
116
.181
117
.181
118
.181
119
.180
120
.180
121
.180
122
.177
123
.176
124
.174
125
.173
126
.172
127
.172
128
.172
129
.172
130
.172
131
.172
132
.170
133
.170
134
.170
135
.170
136
.168
137
.167
138
.166
139
.166
140
.165
141
.165
142
.165
143
.164
144
.164
145
.164
146
.164
147
.163
148
.163
149
.163
150
.163
151
.163
152
.162
153
.161
154
.161
155
.161
156
.160
157
.160
158
.159
159
.158
160
.158
161
.158
162
.157
163
.157
164
.157
165
.157
166
.156
167
.155
168
.155
169
.154
170
.154
171
.154
172
.152
173
.152
174
.152
175
.152
176
.152
177
.151
178
.151
179
.151
180
.151
181
.151
182
.151
183
.151
184
.151
185
.151
186
.151
187
.151
188
.151
189
.151
190
.151
191
.148
192
.147
193
.147
194
.147
195
.146
196
.145
197
.145
198
.144
199
.144
200
.142
201
.142
202
.142
203
.141
204
.141
205
.141
206
.141
207
.139
208
.139
209
.138
210
.138
211
.138
212
.138
213
.137
214
.137
215
.137
216
.136
217
.136
218
.136
219
.136
220
.135
221
.134
222
.134
223
.133
224
.133
225
.133
226
.133
227
.133
228
.130
229
.130
230
.130
231
.129
232
.129
233
.128
234
.128
235
.128
236
.126
237
.124
238
.124
239
.123
240
.123
241
.122
242
.122
243
.122
244
.122
245
.122
246
.119
247
.119
248
.117
249
.117
250
.116
251
.113
252
.111
253
.110
254
.109
255
.107
256
.105
257
.099
258
.089
259
.088
260
.084
261
.078
262
.076
263
.076
264
.074
265
.072
266
.071
267
.069
268
.065
269
.065
270
.064
271
.064
272
.064
273
.064
274
.062
275
.062
276
.062
277
.062
278
.062
279
.062
280
.062
281
.062
282
.062
283
.062
284
.062
285
.061
286
.060
287
.059
288
.048
289
.045
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

Benchmark bibtex

@article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }

Ceiling

1.00.

Note that scores are relative to this ceiling.

Data: Hermann2020cueconflict

Metric: shape_match