Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Hermann2020cueconflict-shape_bias")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.858
2
.819
3
.814
4
.767
5
.767
6
.767
7
.766
8
.758
9
.750
10
.729
11
.715
12
.706
13
.704
14
.680
15
.680
16
.672
17
.656
18
.656
19
.654
20
.654
21
.654
22
.654
23
.624
24
.606
25
.604
26
.584
27
.571
28
.565
29
.564
30
.564
31
.563
32
.558
33
.542
34
.538
35
.537
36
.532
37
.521
38
.513
39
.511
40
.510
41
.508
42
.505
43
.503
44
.500
45
.500
46
.500
47
.500
48
.500
49
.500
50
.500
51
.500
52
.500
53
.500
54
.497
55
.485
56
.478
57
.474
58
.456
59
.453
60
.453
61
.453
62
.442
63
.437
64
.432
65
.430
66
.429
67
.426
68
.420
69
.419
70
.416
71
.412
72
.412
73
.410
74
.408
75
.406
76
.405
77
.401
78
.399
79
.396
80
.394
81
.393
82
.391
83
.388
84
.388
85
.387
86
.387
87
.386
88
.385
89
.372
90
.370
91
.368
92
.368
93
.363
94
.360
95
.357
96
.355
97
.350
98
.350
99
.349
100
.349
101
.348
102
.347
103
.345
104
.340
105
.339
106
.338
107
.337
108
.336
109
.336
110
.336
111
.331
112
.330
113
.325
114
.323
115
.322
116
.322
117
.321
118
.321
119
.320
120
.319
121
.318
122
.318
123
.315
124
.314
125
.313
126
.312
127
.311
128
.309
129
.301
130
.297
131
.296
132
.296
133
.293
134
.292
135
.292
136
.290
137
.289
138
.289
139
.288
140
.287
141
.286
142
.286
143
.285
144
.283
145
.281
146
.280
147
.278
148
.278
149
.275
150
.275
151
.275
152
.275
153
.274
154
.272
155
.272
156
.271
157
.271
158
.271
159
.271
160
.271
161
.270
162
.270
163
.270
164
.269
165
.268
166
.268
167
.266
168
.266
169
.264
170
.263
171
.263
172
.261
173
.260
174
.260
175
.260
176
.259
177
.258
178
.258
179
.256
180
.254
181
.254
182
.253
183
.252
184
.250
185
.249
186
.245
187
.243
188
.243
189
.242
190
.242
191
.242
192
.241
193
.240
194
.239
195
.239
196
.239
197
.239
198
.239
199
.239
200
.239
201
.239
202
.239
203
.239
204
.239
205
.239
206
.239
207
.238
208
.237
209
.236
210
.235
211
.233
212
.233
213
.232
214
.231
215
.231
216
.230
217
.230
218
.228
219
.226
220
.226
221
.226
222
.226
223
.224
224
.223
225
.222
226
.221
227
.221
228
.220
229
.220
230
.219
231
.217
232
.217
233
.217
234
.215
235
.214
236
.214
237
.214
238
.214
239
.214
240
.214
241
.213
242
.213
243
.212
244
.211
245
.211
246
.211
247
.207
248
.206
249
.206
250
.205
251
.205
252
.205
253
.204
254
.203
255
.203
256
.202
257
.198
258
.196
259
.192
260
.192
261
.191
262
.190
263
.188
264
.188
265
.187
266
.185
267
.183
268
.183
269
.181
270
.181
271
.180
272
.180
273
.179
274
.178
275
.176
276
.176
277
.175
278
.175
279
.173
280
.166
281
.162
282
.158
283
.155
284
.126
285
.087
286
.079
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

Benchmark bibtex

@article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }

Ceiling

1.00.

Note that scores are relative to this ceiling.

Data: Hermann2020cueconflict

Metric: shape_bias