Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Hermann2020cueconflict-shape_bias")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.858
2
.819
3
.814
4
.766
5
.758
6
.750
7
.729
8
.715
9
.706
10
.704
11
.680
12
.680
13
.672
14
.656
15
.656
16
.654
17
.654
18
.654
19
.654
20
.624
21
.606
22
.604
23
.584
24
.571
25
.565
26
.564
27
.564
28
.563
29
.558
30
.542
31
.538
32
.537
33
.532
34
.521
35
.513
36
.511
37
.510
38
.508
39
.505
40
.503
41
.500
42
.500
43
.500
44
.500
45
.500
46
.500
47
.500
48
.497
49
.485
50
.478
51
.474
52
.456
53
.453
54
.453
55
.453
56
.442
57
.437
58
.432
59
.430
60
.429
61
.426
62
.420
63
.419
64
.416
65
.412
66
.412
67
.410
68
.408
69
.406
70
.405
71
.401
72
.399
73
.396
74
.394
75
.393
76
.391
77
.388
78
.388
79
.387
80
.387
81
.386
82
.385
83
.372
84
.370
85
.368
86
.368
87
.363
88
.360
89
.357
90
.355
91
.350
92
.350
93
.349
94
.349
95
.348
96
.347
97
.345
98
.340
99
.339
100
.338
101
.337
102
.336
103
.336
104
.336
105
.331
106
.330
107
.325
108
.323
109
.322
110
.322
111
.321
112
.321
113
.320
114
.319
115
.318
116
.318
117
.315
118
.314
119
.313
120
.312
121
.311
122
.309
123
.301
124
.297
125
.296
126
.296
127
.293
128
.292
129
.292
130
.290
131
.289
132
.289
133
.288
134
.287
135
.286
136
.286
137
.285
138
.283
139
.281
140
.280
141
.278
142
.278
143
.275
144
.275
145
.275
146
.275
147
.274
148
.272
149
.272
150
.271
151
.271
152
.271
153
.271
154
.271
155
.270
156
.270
157
.270
158
.269
159
.268
160
.268
161
.266
162
.266
163
.264
164
.263
165
.263
166
.261
167
.260
168
.260
169
.260
170
.259
171
.258
172
.258
173
.256
174
.254
175
.254
176
.253
177
.252
178
.250
179
.249
180
.245
181
.243
182
.243
183
.242
184
.242
185
.242
186
.241
187
.240
188
.239
189
.239
190
.239
191
.239
192
.239
193
.239
194
.239
195
.239
196
.239
197
.238
198
.237
199
.236
200
.235
201
.233
202
.233
203
.232
204
.231
205
.231
206
.230
207
.230
208
.228
209
.226
210
.226
211
.226
212
.226
213
.224
214
.223
215
.222
216
.221
217
.221
218
.220
219
.220
220
.219
221
.217
222
.217
223
.217
224
.215
225
.214
226
.214
227
.214
228
.214
229
.214
230
.214
231
.213
232
.213
233
.212
234
.211
235
.211
236
.211
237
.207
238
.206
239
.206
240
.205
241
.205
242
.205
243
.204
244
.203
245
.203
246
.202
247
.198
248
.196
249
.192
250
.192
251
.191
252
.190
253
.188
254
.188
255
.187
256
.185
257
.183
258
.183
259
.181
260
.181
261
.180
262
.180
263
.179
264
.178
265
.176
266
.176
267
.175
268
.175
269
.173
270
.166
271
.162
272
.158
273
.155
274
.126
275
.087
276
.079
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

Benchmark bibtex

@article{hermann2020origins,
              title={The origins and prevalence of texture bias in convolutional neural networks},
              author={Hermann, Katherine and Chen, Ting and Kornblith, Simon},
              journal={Advances in Neural Information Processing Systems},
              volume={33},
              pages={19000--19015},
              year={2020},
              url={https://proceedings.neurips.cc/paper/2020/hash/db5f9f42a7157abe65bb145000b5871a-Abstract.html}
        }

Ceiling

1.00.

Note that scores are relative to this ceiling.

Data: Hermann2020cueconflict

Metric: shape_bias