Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Maniquet2024-confusion_similarity")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.1
2
1.1
3
1.1
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
.994
11
.955
12
.946
13
.944
14
.928
15
.928
16
.928
17
.917
18
.896
19
.893
20
.892
21
.890
22
.886
23
.878
24
.873
25
.873
26
.858
27
.850
28
.832
29
.832
30
.832
31
.832
32
.831
33
.826
34
.823
35
.821
36
.820
37
.818
38
.813
39
.813
40
.808
41
.808
42
.804
43
.803
44
.798
45
.798
46
.794
47
.793
48
.785
49
.763
50
.759
51
.759
52
.753
53
.753
54
.753
55
.751
56
.751
57
.748
58
.743
59
.738
60
.738
61
.737
62
.736
63
.729
64
.710
65
.708
66
.708
67
.695
68
.679
69
.677
70
.669
71
.668
72
.665
73
.665
74
.662
75
.651
76
.645
77
.640
78
.632
79
.632
80
.630
81
.626
82
.603
83
.600
84
.598
85
.596
86
.586
87
.571
88
.569
89
.568
90
.562
91
.562
92
.562
93
.559
94
.555
95
.555
96
.553
97
.553
98
.552
99
.547
100
.546
101
.541
102
.540
103
.538
104
.535
105
.533
106
.533
107
.530
108
.529
109
.524
110
.520
111
.520
112
.516
113
.513
114
.508
115
.508
116
.502
117
.500
118
.498
119
.498
120
.497
121
.496
122
.496
123
.495
124
.494
125
.490
126
.490
127
.488
128
.487
129
.486
130
.482
131
.482
132
.480
133
.475
134
.473
135
.473
136
.472
137
.460
138
.460
139
.459
140
.456
141
.454
142
.453
143
.453
144
.452
145
.450
146
.448
147
.444
148
.441
149
.438
150
.437
151
.436
152
.436
153
.435
154
.431
155
.428
156
.424
157
.419
158
.418
159
.418
160
.416
161
.412
162
.410
163
.409
164
.407
165
.407
166
.406
167
.403
168
.395
169
.392
170
.381
171
.375
172
.371
173
.365
174
.365
175
.362
176
.358
177
.355
178
.351
179
.348
180
.348
181
.346
182
.345
183
.341
184
.341
185
.341
186
.340
187
.337
188
.326
189
.326
190
.324
191
.324
192
.323
193
.322
194
.315
195
.314
196
.312
197
.305
198
.302
199
.298
200
.289
201
.287
202
.284
203
.281
204
.280
205
.277
206
.270
207
.270
208
.262
209
.255
210
.249
211
.247
212
.239
213
.238
214
.232
215
.227
216
.220
217
.212
218
.206
219
.197
220
.195
221
.195
222
.194
223
.192
224
.189
225
.186
226
.183
227
.175
228
.167
229
.164
230
.162
231
.156
232
.138
233
.123
234
.106
235
.100
236
.098
237
.092
238
.085
239
.062
240
.019
241
-0.002
242
-0.009
243
-0.065
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Benchmark bibtex

@article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}

Ceiling

Not available

Data: Maniquet2024

Metric: confusion_similarity