Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Maniquet2024-confusion_similarity")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.1
2
1.1
3
1.1
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
.994
11
.955
12
.946
13
.944
14
.928
15
.928
16
.917
17
.892
18
.878
19
.873
20
.873
21
.858
22
.850
23
.832
24
.832
25
.832
26
.832
27
.831
28
.826
29
.823
30
.821
31
.820
32
.813
33
.813
34
.808
35
.808
36
.804
37
.803
38
.798
39
.798
40
.794
41
.793
42
.785
43
.763
44
.759
45
.759
46
.753
47
.753
48
.753
49
.751
50
.751
51
.748
52
.743
53
.738
54
.738
55
.737
56
.736
57
.729
58
.710
59
.708
60
.708
61
.695
62
.679
63
.677
64
.669
65
.668
66
.665
67
.665
68
.662
69
.651
70
.645
71
.640
72
.632
73
.632
74
.630
75
.626
76
.603
77
.600
78
.598
79
.586
80
.571
81
.562
82
.562
83
.559
84
.555
85
.555
86
.553
87
.553
88
.547
89
.546
90
.540
91
.538
92
.535
93
.533
94
.533
95
.530
96
.529
97
.524
98
.520
99
.520
100
.516
101
.513
102
.508
103
.508
104
.502
105
.500
106
.498
107
.498
108
.497
109
.496
110
.496
111
.495
112
.490
113
.488
114
.487
115
.486
116
.482
117
.480
118
.475
119
.473
120
.473
121
.472
122
.460
123
.459
124
.454
125
.453
126
.450
127
.444
128
.438
129
.437
130
.436
131
.436
132
.435
133
.428
134
.424
135
.419
136
.418
137
.418
138
.416
139
.412
140
.410
141
.407
142
.407
143
.395
144
.392
145
.381
146
.375
147
.371
148
.365
149
.365
150
.362
151
.358
152
.351
153
.348
154
.348
155
.346
156
.345
157
.341
158
.341
159
.341
160
.340
161
.337
162
.326
163
.326
164
.324
165
.324
166
.323
167
.322
168
.314
169
.312
170
.305
171
.302
172
.298
173
.289
174
.287
175
.284
176
.280
177
.277
178
.270
179
.262
180
.255
181
.247
182
.239
183
.238
184
.232
185
.227
186
.220
187
.212
188
.206
189
.197
190
.195
191
.195
192
.194
193
.189
194
.186
195
.167
196
.164
197
.162
198
.156
199
.138
200
.123
201
.106
202
.100
203
.098
204
.092
205
.062
206
.019
207
-0.002
208
-0.009
209
-0.065
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

Benchmark bibtex

@article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}

Ceiling

Not available

Data: Maniquet2024

Metric: confusion_similarity