Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Maniquet2024-confusion_similarity")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.1
2
1.1
3
1.1
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
.994
11
.955
12
.946
13
.944
14
.928
15
.928
16
.928
17
.917
18
.896
19
.893
20
.892
21
.890
22
.886
23
.878
24
.873
25
.873
26
.858
27
.850
28
.832
29
.832
30
.832
31
.832
32
.831
33
.826
34
.823
35
.821
36
.820
37
.818
38
.813
39
.813
40
.808
41
.808
42
.804
43
.803
44
.798
45
.798
46
.794
47
.793
48
.785
49
.763
50
.759
51
.759
52
.753
53
.753
54
.753
55
.751
56
.751
57
.748
58
.743
59
.738
60
.738
61
.737
62
.736
63
.729
64
.710
65
.708
66
.708
67
.695
68
.679
69
.677
70
.669
71
.668
72
.665
73
.665
74
.662
75
.651
76
.645
77
.640
78
.632
79
.632
80
.630
81
.626
82
.603
83
.600
84
.598
85
.596
86
.586
87
.571
88
.569
89
.568
90
.562
91
.562
92
.562
93
.559
94
.555
95
.555
96
.553
97
.553
98
.552
99
.547
100
.546
101
.541
102
.540
103
.538
104
.535
105
.533
106
.533
107
.530
108
.529
109
.524
110
.520
111
.520
112
.516
113
.513
114
.508
115
.508
116
.502
117
.500
118
.498
119
.498
120
.497
121
.496
122
.496
123
.495
124
.494
125
.490
126
.490
127
.488
128
.487
129
.486
130
.482
131
.482
132
.480
133
.475
134
.473
135
.473
136
.472
137
.461
138
.460
139
.460
140
.459
141
.456
142
.454
143
.453
144
.453
145
.452
146
.450
147
.448
148
.444
149
.441
150
.438
151
.437
152
.436
153
.436
154
.435
155
.431
156
.428
157
.424
158
.419
159
.418
160
.418
161
.416
162
.412
163
.410
164
.409
165
.407
166
.407
167
.406
168
.403
169
.395
170
.392
171
.381
172
.375
173
.371
174
.365
175
.365
176
.362
177
.358
178
.355
179
.351
180
.348
181
.348
182
.346
183
.345
184
.341
185
.341
186
.341
187
.340
188
.337
189
.326
190
.326
191
.324
192
.324
193
.323
194
.322
195
.315
196
.314
197
.312
198
.305
199
.302
200
.298
201
.289
202
.287
203
.284
204
.281
205
.280
206
.277
207
.270
208
.270
209
.262
210
.255
211
.249
212
.247
213
.239
214
.238
215
.232
216
.231
217
.227
218
.220
219
.212
220
.206
221
.197
222
.195
223
.195
224
.194
225
.192
226
.189
227
.186
228
.183
229
.175
230
.167
231
.164
232
.162
233
.156
234
.138
235
.123
236
.106
237
.100
238
.098
239
.092
240
.085
241
.062
242
.019
243
-0.002
244
-0.009
245
-0.065
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

Benchmark bibtex

@article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}

Ceiling

Not available

Data: Maniquet2024

Metric: confusion_similarity