Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Maniquet2024-tasks_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.750
2
.748
3
.746
4
.746
5
.745
6
.741
7
.739
8
.738
9
.737
10
.735
11
.734
12
.734
13
.732
14
.729
15
.727
16
.727
17
.724
18
.718
19
.717
20
.716
21
.716
22
.715
23
.715
24
.713
25
.712
26
.712
27
.710
28
.707
29
.705
30
.705
31
.703
32
.701
33
.699
34
.698
35
.697
36
.695
37
.692
38
.692
39
.691
40
.690
41
.689
42
.688
43
.688
44
.688
45
.688
46
.687
47
.686
48
.685
49
.685
50
.685
51
.684
52
.684
53
.683
54
.681
55
.681
56
.680
57
.680
58
.679
59
.678
60
.678
61
.676
62
.676
63
.676
64
.676
65
.674
66
.674
67
.672
68
.672
69
.671
70
.669
71
.669
72
.668
73
.668
74
.667
75
.667
76
.667
77
.667
78
.667
79
.667
80
.667
81
.667
82
.666
83
.666
84
.666
85
.665
86
.663
87
.661
88
.660
89
.660
90
.659
91
.659
92
.658
93
.657
94
.656
95
.656
96
.656
97
.656
98
.656
99
.656
100
.654
101
.653
102
.653
103
.651
104
.650
105
.649
106
.649
107
.649
108
.648
109
.648
110
.648
111
.648
112
.647
113
.647
114
.647
115
.647
116
.646
117
.646
118
.646
119
.646
120
.644
121
.644
122
.642
123
.640
124
.639
125
.638
126
.638
127
.638
128
.635
129
.632
130
.625
131
.625
132
.624
133
.617
134
.617
135
.616
136
.616
137
.615
138
.613
139
.610
140
.609
141
.606
142
.604
143
.596
144
.576
145
.568
146
.565
147
.565
148
.550
149
.550
150
.549
151
.545
152
.541
153
.541
154
.535
155
.534
156
.531
157
.531
158
.525
159
.521
160
.521
161
.520
162
.507
163
.502
164
.499
165
.498
166
.498
167
.494
168
.484
169
.484
170
.484
171
.482
172
.479
173
.478
174
.476
175
.470
176
.470
177
.462
178
.461
179
.450
180
.437
181
.395
182
.395
183
.383
184
.380
185
.379
186
.367
187
.366
188
.358
189
.349
190
.349
191
.344
192
.343
193
.341
194
.326
195
.325
196
.323
197
.323
198
.296
199
.266
200
.210
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Benchmark bibtex

@article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}

Ceiling

Not available

Data: Maniquet2024

Metric: tasks_consistency