Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Maniquet2024-tasks_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.781
2
.774
3
.750
4
.748
5
.747
6
.746
7
.746
8
.745
9
.742
10
.741
11
.739
12
.738
13
.737
14
.735
15
.734
16
.734
17
.732
18
.731
19
.729
20
.727
21
.727
22
.724
23
.718
24
.717
25
.717
26
.716
27
.716
28
.715
29
.715
30
.713
31
.712
32
.712
33
.710
34
.707
35
.705
36
.705
37
.703
38
.703
39
.701
40
.701
41
.699
42
.698
43
.697
44
.695
45
.692
46
.692
47
.691
48
.690
49
.689
50
.688
51
.688
52
.688
53
.688
54
.687
55
.686
56
.686
57
.686
58
.685
59
.685
60
.685
61
.684
62
.684
63
.683
64
.681
65
.681
66
.681
67
.680
68
.680
69
.680
70
.680
71
.679
72
.679
73
.678
74
.678
75
.676
76
.676
77
.676
78
.676
79
.674
80
.674
81
.672
82
.672
83
.671
84
.669
85
.669
86
.669
87
.668
88
.668
89
.667
90
.667
91
.667
92
.667
93
.667
94
.667
95
.667
96
.667
97
.666
98
.666
99
.666
100
.666
101
.665
102
.663
103
.661
104
.660
105
.660
106
.659
107
.659
108
.658
109
.657
110
.656
111
.656
112
.656
113
.656
114
.656
115
.656
116
.654
117
.653
118
.653
119
.651
120
.650
121
.649
122
.649
123
.649
124
.648
125
.648
126
.648
127
.648
128
.647
129
.647
130
.647
131
.647
132
.646
133
.646
134
.646
135
.646
136
.644
137
.644
138
.644
139
.642
140
.640
141
.640
142
.639
143
.638
144
.638
145
.638
146
.635
147
.632
148
.625
149
.625
150
.624
151
.624
152
.624
153
.618
154
.617
155
.617
156
.616
157
.616
158
.615
159
.613
160
.610
161
.609
162
.607
163
.606
164
.604
165
.596
166
.578
167
.578
168
.576
169
.569
170
.568
171
.565
172
.565
173
.561
174
.553
175
.550
176
.550
177
.549
178
.545
179
.541
180
.541
181
.535
182
.534
183
.531
184
.531
185
.528
186
.525
187
.525
188
.521
189
.521
190
.520
191
.507
192
.507
193
.502
194
.499
195
.498
196
.498
197
.494
198
.484
199
.484
200
.484
201
.482
202
.482
203
.479
204
.478
205
.478
206
.476
207
.470
208
.470
209
.470
210
.462
211
.462
212
.461
213
.450
214
.448
215
.437
216
.416
217
.412
218
.407
219
.395
220
.395
221
.395
222
.395
223
.383
224
.380
225
.379
226
.367
227
.366
228
.363
229
.358
230
.349
231
.349
232
.344
233
.343
234
.341
235
.328
236
.326
237
.325
238
.323
239
.323
240
.296
241
.266
242
.237
243
.210
244
.204
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

Benchmark bibtex

@article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}

Ceiling

Not available

Data: Maniquet2024

Metric: tasks_consistency