Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Maniquet2024-tasks_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.781
2
.774
3
.750
4
.748
5
.747
6
.746
7
.746
8
.745
9
.742
10
.741
11
.739
12
.738
13
.737
14
.735
15
.734
16
.734
17
.732
18
.731
19
.729
20
.727
21
.727
22
.724
23
.718
24
.717
25
.717
26
.716
27
.716
28
.715
29
.715
30
.713
31
.712
32
.712
33
.710
34
.707
35
.705
36
.705
37
.703
38
.703
39
.701
40
.701
41
.699
42
.698
43
.697
44
.695
45
.692
46
.692
47
.691
48
.690
49
.689
50
.688
51
.688
52
.688
53
.688
54
.687
55
.686
56
.686
57
.686
58
.685
59
.685
60
.685
61
.684
62
.684
63
.683
64
.681
65
.681
66
.681
67
.680
68
.680
69
.680
70
.680
71
.679
72
.679
73
.678
74
.678
75
.676
76
.676
77
.676
78
.676
79
.674
80
.674
81
.672
82
.672
83
.671
84
.669
85
.669
86
.669
87
.668
88
.668
89
.667
90
.667
91
.667
92
.667
93
.667
94
.667
95
.667
96
.667
97
.666
98
.666
99
.666
100
.666
101
.665
102
.663
103
.661
104
.660
105
.660
106
.659
107
.659
108
.658
109
.657
110
.656
111
.656
112
.656
113
.656
114
.656
115
.656
116
.654
117
.653
118
.653
119
.651
120
.650
121
.649
122
.649
123
.649
124
.648
125
.648
126
.648
127
.648
128
.647
129
.647
130
.647
131
.647
132
.646
133
.646
134
.646
135
.646
136
.644
137
.644
138
.644
139
.642
140
.640
141
.640
142
.639
143
.638
144
.638
145
.638
146
.635
147
.632
148
.625
149
.625
150
.624
151
.624
152
.618
153
.617
154
.617
155
.616
156
.616
157
.615
158
.613
159
.610
160
.609
161
.607
162
.606
163
.604
164
.596
165
.578
166
.578
167
.576
168
.569
169
.568
170
.565
171
.565
172
.561
173
.553
174
.550
175
.550
176
.549
177
.545
178
.541
179
.541
180
.535
181
.534
182
.531
183
.531
184
.528
185
.525
186
.525
187
.521
188
.521
189
.520
190
.507
191
.507
192
.502
193
.499
194
.498
195
.498
196
.494
197
.484
198
.484
199
.484
200
.482
201
.482
202
.479
203
.478
204
.478
205
.476
206
.470
207
.470
208
.470
209
.462
210
.462
211
.461
212
.450
213
.448
214
.437
215
.416
216
.412
217
.407
218
.395
219
.395
220
.395
221
.395
222
.383
223
.380
224
.379
225
.367
226
.366
227
.363
228
.358
229
.349
230
.349
231
.344
232
.343
233
.341
234
.326
235
.325
236
.323
237
.323
238
.296
239
.266
240
.237
241
.210
242
.204
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Benchmark bibtex

@article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}

Ceiling

Not available

Data: Maniquet2024

Metric: tasks_consistency