Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Maniquet2024-tasks_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.750
2
.748
3
.746
4
.746
5
.745
6
.741
7
.739
8
.738
9
.737
10
.735
11
.734
12
.734
13
.732
14
.731
15
.729
16
.727
17
.727
18
.724
19
.718
20
.717
21
.716
22
.716
23
.715
24
.715
25
.713
26
.712
27
.712
28
.710
29
.707
30
.705
31
.705
32
.703
33
.701
34
.699
35
.698
36
.697
37
.695
38
.692
39
.692
40
.691
41
.690
42
.689
43
.688
44
.688
45
.688
46
.688
47
.687
48
.686
49
.685
50
.685
51
.685
52
.684
53
.684
54
.683
55
.681
56
.681
57
.680
58
.680
59
.679
60
.678
61
.678
62
.676
63
.676
64
.676
65
.676
66
.674
67
.674
68
.672
69
.672
70
.671
71
.669
72
.669
73
.668
74
.668
75
.667
76
.667
77
.667
78
.667
79
.667
80
.667
81
.667
82
.667
83
.666
84
.666
85
.666
86
.665
87
.663
88
.661
89
.660
90
.660
91
.659
92
.659
93
.658
94
.657
95
.656
96
.656
97
.656
98
.656
99
.656
100
.656
101
.654
102
.653
103
.653
104
.651
105
.650
106
.649
107
.649
108
.649
109
.648
110
.648
111
.648
112
.648
113
.647
114
.647
115
.647
116
.647
117
.646
118
.646
119
.646
120
.646
121
.644
122
.644
123
.642
124
.640
125
.639
126
.638
127
.638
128
.638
129
.635
130
.632
131
.625
132
.625
133
.624
134
.617
135
.617
136
.616
137
.616
138
.615
139
.613
140
.610
141
.609
142
.607
143
.606
144
.604
145
.596
146
.578
147
.576
148
.569
149
.568
150
.565
151
.565
152
.561
153
.553
154
.550
155
.550
156
.549
157
.545
158
.541
159
.541
160
.535
161
.534
162
.531
163
.531
164
.525
165
.521
166
.521
167
.520
168
.507
169
.507
170
.502
171
.499
172
.498
173
.498
174
.494
175
.484
176
.484
177
.484
178
.482
179
.479
180
.478
181
.476
182
.470
183
.470
184
.470
185
.462
186
.461
187
.450
188
.448
189
.437
190
.395
191
.395
192
.383
193
.380
194
.379
195
.367
196
.366
197
.358
198
.349
199
.349
200
.344
201
.343
202
.341
203
.326
204
.325
205
.323
206
.323
207
.296
208
.266
209
.210
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Benchmark bibtex

@article {Maniquet2024.04.02.587669,
	author = {Maniquet, Tim and de Beeck, Hans Op and Costantino, Andrea Ivan},
	title = {Recurrent issues with deep neural network models of visual recognition},
	elocation-id = {2024.04.02.587669},
	year = {2024},
	doi = {10.1101/2024.04.02.587669},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669},
	eprint = {https://www.biorxiv.org/content/early/2024/04/10/2024.04.02.587669.full.pdf},
	journal = {bioRxiv}
}

Ceiling

Not available

Data: Maniquet2024

Metric: tasks_consistency