Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024convergence-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
.985
22
.985
23
.985
24
.925
25
.925
26
.925
27
.894
28
.839
29
.839
30
.839
31
.839
32
.839
33
.839
34
.811
35
.811
36
.811
37
.811
38
.762
39
.762
40
.762
41
.762
42
.762
43
.762
44
.762
45
.762
46
.736
47
.736
48
.736
49
.691
50
.691
51
.691
52
.691
53
.691
54
.691
55
.691
56
.691
57
.691
58
.667
59
.667
60
.667
61
.667
62
.627
63
.627
64
.627
65
.627
66
.627
67
.627
68
.627
69
.627
70
.627
71
.627
72
.627
73
.627
74
.627
75
.627
76
.627
77
.627
78
.627
79
.606
80
.606
81
.569
82
.569
83
.569
84
.569
85
.569
86
.569
87
.569
88
.569
89
.549
90
.549
91
.549
92
.516
93
.516
94
.516
95
.516
96
.516
97
.516
98
.516
99
.516
100
.516
101
.468
102
.468
103
.468
104
.468
105
.468
106
.468
107
.468
108
.452
109
.425
110
.425
111
.425
112
.425
113
.425
114
.425
115
.425
116
.425
117
.425
118
.425
119
.410
120
.385
121
.385
122
.385
123
.385
124
.385
125
.385
126
.385
127
.385
128
.385
129
.385
130
.385
131
.385
132
.385
133
.385
134
.349
135
.349
136
.349
137
.349
138
.349
139
.349
140
.317
141
.317
142
.317
143
.317
144
.317
145
.317
146
.317
147
.317
148
.317
149
.317
150
.317
151
.317
152
.306
153
.288
154
.288
155
.288
156
.288
157
.288
158
.288
159
.288
160
.261
161
.261
162
.261
163
.261
164
.261
165
.252
166
.237
167
.237
168
.237
169
.237
170
.237
171
.237
172
.237
173
.237
174
.215
175
.215
176
.215
177
.215
178
.215
179
.215
180
.215
181
.195
182
.195
183
.195
184
.195
185
.195
186
.195
187
.195
188
.195
189
.195
190
.195
191
.195
192
.188
193
.177
194
.177
195
.177
196
.177
197
.177
198
.177
199
.177
200
.177
201
.177
202
.171
203
.160
204
.160
205
.160
206
.160
207
.160
208
.155
209
.145
210
.145
211
.145
212
.141
213
.132
214
.132
215
.132
216
.132
217
.132
218
.120
219
.120
220
.120
221
.109
222
.109
223
.109
224
.099
225
.089
226
.081
227
.081
228
.074
229
.074
230
.071
231
.067
232
.067
233
.067
234
.061
235
.055
236
.050
237
.050
238
.050
239
.044
240
.041
241
.037
242
.037
243
.034
244
.028
245
.028
246
.028
247
.013
248

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.86.

Note that scores are relative to this ceiling.

Data: Ferguson2024convergence

Metric: value_delta