Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024convergence-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
.985
22
.985
23
.985
24
.925
25
.925
26
.894
27
.839
28
.839
29
.839
30
.839
31
.839
32
.839
33
.811
34
.811
35
.811
36
.811
37
.762
38
.762
39
.762
40
.762
41
.762
42
.762
43
.762
44
.762
45
.736
46
.736
47
.736
48
.691
49
.691
50
.691
51
.691
52
.691
53
.691
54
.691
55
.691
56
.691
57
.667
58
.667
59
.667
60
.667
61
.627
62
.627
63
.627
64
.627
65
.627
66
.627
67
.627
68
.627
69
.627
70
.627
71
.627
72
.627
73
.627
74
.627
75
.627
76
.627
77
.627
78
.606
79
.606
80
.569
81
.569
82
.569
83
.569
84
.569
85
.569
86
.569
87
.569
88
.549
89
.549
90
.549
91
.516
92
.516
93
.516
94
.516
95
.516
96
.516
97
.516
98
.516
99
.516
100
.468
101
.468
102
.468
103
.468
104
.468
105
.468
106
.468
107
.452
108
.425
109
.425
110
.425
111
.425
112
.425
113
.425
114
.425
115
.425
116
.425
117
.425
118
.410
119
.385
120
.385
121
.385
122
.385
123
.385
124
.385
125
.385
126
.385
127
.385
128
.385
129
.385
130
.385
131
.385
132
.349
133
.349
134
.349
135
.349
136
.349
137
.349
138
.317
139
.317
140
.317
141
.317
142
.317
143
.317
144
.317
145
.317
146
.317
147
.317
148
.317
149
.317
150
.306
151
.288
152
.288
153
.288
154
.288
155
.288
156
.288
157
.288
158
.261
159
.261
160
.261
161
.261
162
.261
163
.252
164
.237
165
.237
166
.237
167
.237
168
.237
169
.237
170
.237
171
.237
172
.215
173
.215
174
.215
175
.215
176
.215
177
.215
178
.215
179
.195
180
.195
181
.195
182
.195
183
.195
184
.195
185
.195
186
.195
187
.195
188
.195
189
.195
190
.188
191
.177
192
.177
193
.177
194
.177
195
.177
196
.177
197
.177
198
.177
199
.177
200
.171
201
.160
202
.160
203
.160
204
.160
205
.160
206
.155
207
.145
208
.145
209
.145
210
.141
211
.132
212
.132
213
.132
214
.132
215
.132
216
.120
217
.120
218
.109
219
.109
220
.109
221
.099
222
.089
223
.081
224
.081
225
.074
226
.074
227
.071
228
.067
229
.067
230
.067
231
.061
232
.055
233
.050
234
.050
235
.050
236
.044
237
.041
238
.037
239
.037
240
.034
241
.028
242
.028
243
.013
244

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.86.

Note that scores are relative to this ceiling.

Data: Ferguson2024convergence

Metric: value_delta