Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024gray_easy-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
.973
7
.973
8
.973
9
.973
10
.973
11
.932
12
.882
13
.882
14
.882
15
.882
16
.882
17
.882
18
.882
19
.882
20
.882
21
.882
22
.845
23
.845
24
.845
25
.845
26
.845
27
.845
28
.845
29
.845
30
.845
31
.845
32
.845
33
.845
34
.845
35
.845
36
.845
37
.845
38
.845
39
.845
40
.845
41
.845
42
.845
43
.845
44
.845
45
.845
46
.800
47
.800
48
.800
49
.800
50
.800
51
.767
52
.767
53
.767
54
.767
55
.725
56
.725
57
.725
58
.725
59
.725
60
.695
61
.695
62
.695
63
.695
64
.658
65
.630
66
.630
67
.630
68
.630
69
.630
70
.630
71
.596
72
.596
73
.596
74
.572
75
.572
76
.572
77
.572
78
.541
79
.541
80
.541
81
.541
82
.518
83
.518
84
.518
85
.518
86
.518
87
.518
88
.518
89
.490
90
.490
91
.490
92
.470
93
.470
94
.470
95
.470
96
.470
97
.470
98
.470
99
.470
100
.445
101
.445
102
.445
103
.445
104
.426
105
.426
106
.426
107
.426
108
.426
109
.426
110
.426
111
.426
112
.426
113
.403
114
.403
115
.387
116
.387
117
.351
118
.351
119
.332
120
.332
121
.332
122
.332
123
.318
124
.318
125
.318
126
.318
127
.318
128
.318
129
.301
130
.288
131
.288
132
.288
133
.288
134
.288
135
.288
136
.288
137
.261
138
.261
139
.261
140
.261
141
.261
142
.247
143
.247
144
.237
145
.237
146
.237
147
.237
148
.237
149
.237
150
.215
151
.215
152
.215
153
.215
154
.203
155
.195
156
.195
157
.195
158
.195
159
.184
160
.184
161
.177
162
.177
163
.177
164
.177
165
.177
166
.160
167
.160
168
.160
169
.160
170
.160
171
.160
172
.160
173
.160
174
.160
175
.152
176
.152
177
.152
178
.145
179
.145
180
.145
181
.138
182
.132
183
.132
184
.125
185
.120
186
.120
187
.120
188
.120
189
.120
190
.113
191
.108
192
.108
193
.108
194
.108
195
.108
196
.103
197
.098
198
.098
199
.098
200
.098
201
.098
202
.089
203
.089
204
.089
205
.089
206
.089
207
.089
208
.081
209
.081
210
.081
211
.076
212
.073
213
.073
214
.073
215
.073
216
.073
217
.073
218
.073
219
.073
220
.073
221
.073
222
.066
223
.066
224
.066
225
.060
226
.060
227
.060
228
.060
229
.060
230
.060
231
.060
232
.055
233
.055
234
.055
235
.055
236
.052
237
.050
238
.050
239
.050
240
.041
241
.041
242
.041
243
.037
244
.034
245
.034
246
.028
247
.025
248
.019

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.91.

Note that scores are relative to this ceiling.

Data: Ferguson2024gray_easy

Metric: value_delta