Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024gray_easy-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
.973
7
.973
8
.973
9
.973
10
.932
11
.882
12
.882
13
.882
14
.882
15
.882
16
.882
17
.882
18
.845
19
.845
20
.845
21
.845
22
.845
23
.845
24
.845
25
.845
26
.845
27
.845
28
.845
29
.845
30
.845
31
.845
32
.845
33
.845
34
.845
35
.845
36
.845
37
.845
38
.845
39
.845
40
.845
41
.800
42
.800
43
.767
44
.767
45
.767
46
.725
47
.725
48
.725
49
.725
50
.695
51
.695
52
.695
53
.695
54
.658
55
.630
56
.630
57
.630
58
.630
59
.630
60
.596
61
.596
62
.596
63
.572
64
.572
65
.572
66
.572
67
.541
68
.541
69
.541
70
.518
71
.518
72
.518
73
.518
74
.518
75
.518
76
.518
77
.490
78
.490
79
.470
80
.470
81
.470
82
.470
83
.470
84
.470
85
.470
86
.470
87
.445
88
.445
89
.426
90
.426
91
.426
92
.426
93
.426
94
.426
95
.426
96
.426
97
.403
98
.403
99
.387
100
.387
101
.351
102
.351
103
.332
104
.332
105
.332
106
.318
107
.318
108
.318
109
.318
110
.318
111
.288
112
.288
113
.288
114
.288
115
.288
116
.288
117
.261
118
.261
119
.261
120
.261
121
.261
122
.247
123
.247
124
.237
125
.237
126
.237
127
.237
128
.237
129
.237
130
.215
131
.215
132
.215
133
.215
134
.195
135
.195
136
.195
137
.184
138
.177
139
.177
140
.177
141
.177
142
.160
143
.160
144
.160
145
.160
146
.160
147
.160
148
.160
149
.152
150
.152
151
.145
152
.145
153
.145
154
.138
155
.132
156
.132
157
.125
158
.120
159
.120
160
.120
161
.120
162
.120
163
.108
164
.108
165
.108
166
.108
167
.108
168
.103
169
.098
170
.098
171
.098
172
.098
173
.098
174
.089
175
.089
176
.089
177
.089
178
.089
179
.089
180
.081
181
.081
182
.081
183
.076
184
.073
185
.073
186
.073
187
.073
188
.073
189
.073
190
.073
191
.073
192
.073
193
.066
194
.066
195
.066
196
.060
197
.060
198
.060
199
.060
200
.060
201
.060
202
.060
203
.055
204
.055
205
.055
206
.055
207
.052
208
.050
209
.050
210
.050
211
.041
212
.041
213
.041
214
.037
215
.034
216
.034
217
.028
218
.025
219
.019

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.91.

Note that scores are relative to this ceiling.

Data: Ferguson2024gray_easy

Metric: value_delta