Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024gray_easy-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
.973
7
.973
8
.973
9
.973
10
.932
11
.882
12
.882
13
.882
14
.882
15
.882
16
.882
17
.882
18
.845
19
.845
20
.845
21
.845
22
.845
23
.845
24
.845
25
.845
26
.845
27
.845
28
.845
29
.845
30
.845
31
.845
32
.845
33
.845
34
.845
35
.845
36
.845
37
.845
38
.845
39
.845
40
.845
41
.845
42
.800
43
.800
44
.800
45
.800
46
.767
47
.767
48
.767
49
.725
50
.725
51
.725
52
.725
53
.695
54
.695
55
.695
56
.695
57
.658
58
.630
59
.630
60
.630
61
.630
62
.630
63
.596
64
.596
65
.596
66
.572
67
.572
68
.572
69
.572
70
.541
71
.541
72
.541
73
.518
74
.518
75
.518
76
.518
77
.518
78
.518
79
.518
80
.490
81
.490
82
.490
83
.470
84
.470
85
.470
86
.470
87
.470
88
.470
89
.470
90
.470
91
.445
92
.445
93
.445
94
.426
95
.426
96
.426
97
.426
98
.426
99
.426
100
.426
101
.426
102
.403
103
.403
104
.387
105
.387
106
.351
107
.351
108
.332
109
.332
110
.332
111
.318
112
.318
113
.318
114
.318
115
.318
116
.301
117
.288
118
.288
119
.288
120
.288
121
.288
122
.288
123
.261
124
.261
125
.261
126
.261
127
.261
128
.247
129
.247
130
.237
131
.237
132
.237
133
.237
134
.237
135
.237
136
.215
137
.215
138
.215
139
.215
140
.195
141
.195
142
.195
143
.184
144
.184
145
.177
146
.177
147
.177
148
.177
149
.160
150
.160
151
.160
152
.160
153
.160
154
.160
155
.160
156
.152
157
.152
158
.152
159
.145
160
.145
161
.145
162
.138
163
.132
164
.132
165
.125
166
.120
167
.120
168
.120
169
.120
170
.120
171
.108
172
.108
173
.108
174
.108
175
.108
176
.103
177
.098
178
.098
179
.098
180
.098
181
.098
182
.089
183
.089
184
.089
185
.089
186
.089
187
.089
188
.081
189
.081
190
.081
191
.076
192
.073
193
.073
194
.073
195
.073
196
.073
197
.073
198
.073
199
.073
200
.073
201
.073
202
.066
203
.066
204
.066
205
.060
206
.060
207
.060
208
.060
209
.060
210
.060
211
.060
212
.055
213
.055
214
.055
215
.055
216
.052
217
.050
218
.050
219
.050
220
.041
221
.041
222
.041
223
.037
224
.034
225
.034
226
.028
227
.025
228
.019

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.91.

Note that scores are relative to this ceiling.

Data: Ferguson2024gray_easy

Metric: value_delta