Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024gray_easy-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
.973
7
.973
8
.973
9
.973
10
.932
11
.882
12
.882
13
.882
14
.882
15
.882
16
.882
17
.882
18
.882
19
.882
20
.845
21
.845
22
.845
23
.845
24
.845
25
.845
26
.845
27
.845
28
.845
29
.845
30
.845
31
.845
32
.845
33
.845
34
.845
35
.845
36
.845
37
.845
38
.845
39
.845
40
.845
41
.845
42
.845
43
.845
44
.800
45
.800
46
.800
47
.800
48
.767
49
.767
50
.767
51
.767
52
.725
53
.725
54
.725
55
.725
56
.725
57
.695
58
.695
59
.695
60
.695
61
.658
62
.630
63
.630
64
.630
65
.630
66
.630
67
.596
68
.596
69
.596
70
.572
71
.572
72
.572
73
.572
74
.541
75
.541
76
.541
77
.541
78
.518
79
.518
80
.518
81
.518
82
.518
83
.518
84
.518
85
.490
86
.490
87
.490
88
.470
89
.470
90
.470
91
.470
92
.470
93
.470
94
.470
95
.470
96
.445
97
.445
98
.445
99
.445
100
.426
101
.426
102
.426
103
.426
104
.426
105
.426
106
.426
107
.426
108
.426
109
.403
110
.403
111
.387
112
.387
113
.351
114
.351
115
.332
116
.332
117
.332
118
.332
119
.318
120
.318
121
.318
122
.318
123
.318
124
.318
125
.301
126
.288
127
.288
128
.288
129
.288
130
.288
131
.288
132
.288
133
.261
134
.261
135
.261
136
.261
137
.261
138
.247
139
.247
140
.237
141
.237
142
.237
143
.237
144
.237
145
.237
146
.215
147
.215
148
.215
149
.215
150
.203
151
.195
152
.195
153
.195
154
.195
155
.184
156
.184
157
.177
158
.177
159
.177
160
.177
161
.177
162
.160
163
.160
164
.160
165
.160
166
.160
167
.160
168
.160
169
.160
170
.160
171
.152
172
.152
173
.152
174
.145
175
.145
176
.145
177
.138
178
.132
179
.132
180
.125
181
.120
182
.120
183
.120
184
.120
185
.120
186
.113
187
.108
188
.108
189
.108
190
.108
191
.108
192
.103
193
.098
194
.098
195
.098
196
.098
197
.098
198
.089
199
.089
200
.089
201
.089
202
.089
203
.089
204
.081
205
.081
206
.081
207
.076
208
.073
209
.073
210
.073
211
.073
212
.073
213
.073
214
.073
215
.073
216
.073
217
.073
218
.066
219
.066
220
.066
221
.060
222
.060
223
.060
224
.060
225
.060
226
.060
227
.060
228
.055
229
.055
230
.055
231
.055
232
.052
233
.050
234
.050
235
.050
236
.041
237
.041
238
.041
239
.037
240
.034
241
.034
242
.028
243
.025
244
.019

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.91.

Note that scores are relative to this ceiling.

Data: Ferguson2024gray_easy

Metric: value_delta