Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024gray_easy-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
.973
7
.973
8
.973
9
.973
10
.882
11
.882
12
.882
13
.882
14
.882
15
.882
16
.882
17
.845
18
.845
19
.845
20
.845
21
.845
22
.845
23
.845
24
.845
25
.845
26
.845
27
.845
28
.845
29
.845
30
.845
31
.845
32
.845
33
.845
34
.845
35
.845
36
.845
37
.845
38
.845
39
.845
40
.800
41
.800
42
.767
43
.767
44
.767
45
.725
46
.725
47
.725
48
.725
49
.695
50
.695
51
.695
52
.695
53
.658
54
.630
55
.630
56
.630
57
.630
58
.630
59
.596
60
.596
61
.596
62
.572
63
.572
64
.572
65
.572
66
.541
67
.541
68
.541
69
.518
70
.518
71
.518
72
.518
73
.518
74
.518
75
.518
76
.490
77
.490
78
.470
79
.470
80
.470
81
.470
82
.470
83
.470
84
.470
85
.470
86
.445
87
.445
88
.426
89
.426
90
.426
91
.426
92
.426
93
.426
94
.426
95
.426
96
.403
97
.403
98
.387
99
.351
100
.332
101
.332
102
.332
103
.318
104
.318
105
.318
106
.318
107
.318
108
.288
109
.288
110
.288
111
.288
112
.288
113
.288
114
.261
115
.261
116
.261
117
.247
118
.247
119
.237
120
.237
121
.237
122
.237
123
.237
124
.215
125
.215
126
.215
127
.215
128
.195
129
.195
130
.184
131
.177
132
.177
133
.177
134
.160
135
.160
136
.160
137
.160
138
.160
139
.160
140
.160
141
.152
142
.152
143
.145
144
.145
145
.145
146
.138
147
.132
148
.132
149
.125
150
.120
151
.120
152
.120
153
.108
154
.108
155
.108
156
.108
157
.103
158
.098
159
.098
160
.098
161
.098
162
.089
163
.089
164
.089
165
.089
166
.089
167
.089
168
.081
169
.081
170
.081
171
.076
172
.073
173
.073
174
.073
175
.073
176
.073
177
.073
178
.073
179
.066
180
.066
181
.066
182
.060
183
.060
184
.060
185
.060
186
.060
187
.060
188
.060
189
.055
190
.055
191
.055
192
.055
193
.052
194
.050
195
.050
196
.050
197
.041
198
.041
199
.041
200
.037
201
.034
202
.034
203
.028
204
.025
205
.019

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.91.

Note that scores are relative to this ceiling.

Data: Ferguson2024gray_easy

Metric: value_delta