Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024half-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
1.0
25
1.0
26
.975
27
.975
28
.975
29
.975
30
.975
31
.975
32
.942
33
.942
34
.942
35
.942
36
.942
37
.942
38
.942
39
.942
40
.942
41
.942
42
.882
43
.882
44
.882
45
.852
46
.852
47
.852
48
.852
49
.852
50
.852
51
.798
52
.798
53
.798
54
.798
55
.798
56
.771
57
.771
58
.771
59
.771
60
.771
61
.771
62
.771
63
.771
64
.771
65
.771
66
.771
67
.771
68
.771
69
.722
70
.722
71
.722
72
.722
73
.722
74
.722
75
.722
76
.698
77
.698
78
.698
79
.698
80
.698
81
.698
82
.698
83
.698
84
.698
85
.653
86
.653
87
.653
88
.631
89
.631
90
.631
91
.631
92
.631
93
.631
94
.631
95
.631
96
.631
97
.631
98
.591
99
.591
100
.591
101
.591
102
.591
103
.591
104
.591
105
.571
106
.571
107
.571
108
.571
109
.571
110
.571
111
.571
112
.571
113
.571
114
.571
115
.571
116
.571
117
.571
118
.571
119
.571
120
.535
121
.535
122
.535
123
.517
124
.517
125
.517
126
.517
127
.517
128
.517
129
.517
130
.517
131
.517
132
.517
133
.484
134
.484
135
.484
136
.484
137
.484
138
.467
139
.467
140
.467
141
.467
142
.467
143
.467
144
.438
145
.438
146
.423
147
.423
148
.423
149
.423
150
.423
151
.423
152
.423
153
.423
154
.423
155
.423
156
.396
157
.383
158
.383
159
.383
160
.383
161
.383
162
.383
163
.383
164
.383
165
.383
166
.358
167
.358
168
.346
169
.346
170
.346
171
.346
172
.324
173
.324
174
.324
175
.324
176
.324
177
.313
178
.313
179
.313
180
.313
181
.313
182
.313
183
.293
184
.293
185
.283
186
.283
187
.283
188
.283
189
.283
190
.283
191
.283
192
.283
193
.283
194
.283
195
.256
196
.256
197
.256
198
.240
199
.240
200
.232
201
.232
202
.232
203
.232
204
.232
205
.232
206
.217
207
.217
208
.210
209
.196
210
.196
211
.190
212
.172
213
.172
214
.172
215
.172
216
.172
217
.172
218
.172
219
.172
220
.155
221
.155
222
.155
223
.155
224
.155
225
.155
226
.155
227
.145
228
.141
229
.141
230
.132
231
.127
232
.127
233
.115
234
.115
235
.115
236
.115
237
.115
238
.108
239
.104
240
.104
241
.094
242
.094
243
.085
244
.077
245
.077
246
.077
247
.072
248

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.90.

Note that scores are relative to this ceiling.

Data: Ferguson2024half

Metric: value_delta