Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024eighth-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
.974
8
.974
9
.974
10
.974
11
.951
12
.882
13
.882
14
.882
15
.882
16
.882
17
.882
18
.882
19
.882
20
.861
21
.799
22
.780
23
.723
24
.723
25
.723
26
.723
27
.706
28
.655
29
.655
30
.655
31
.655
32
.655
33
.655
34
.593
35
.593
36
.593
37
.579
38
.537
39
.537
40
.537
41
.537
42
.524
43
.486
44
.486
45
.486
46
.486
47
.486
48
.486
49
.486
50
.486
51
.475
52
.440
53
.440
54
.440
55
.440
56
.440
57
.399
58
.399
59
.399
60
.399
61
.399
62
.399
63
.399
64
.399
65
.361
66
.361
67
.361
68
.361
69
.361
70
.361
71
.361
72
.361
73
.361
74
.361
75
.327
76
.327
77
.327
78
.327
79
.327
80
.327
81
.296
82
.296
83
.296
84
.296
85
.296
86
.296
87
.268
88
.268
89
.268
90
.268
91
.243
92
.243
93
.243
94
.243
95
.220
96
.220
97
.220
98
.220
99
.199
100
.199
101
.199
102
.199
103
.199
104
.199
105
.199
106
.180
107
.180
108
.180
109
.180
110
.180
111
.180
112
.180
113
.163
114
.163
115
.163
116
.163
117
.163
118
.148
119
.148
120
.148
121
.148
122
.148
123
.148
124
.148
125
.148
126
.148
127
.134
128
.134
129
.134
130
.134
131
.134
132
.134
133
.134
134
.134
135
.134
136
.121
137
.121
138
.121
139
.121
140
.121
141
.121
142
.121
143
.121
144
.121
145
.110
146
.110
147
.110
148
.110
149
.110
150
.110
151
.110
152
.110
153
.110
154
.110
155
.110
156
.099
157
.099
158
.099
159
.099
160
.099
161
.099
162
.099
163
.099
164
.099
165
.099
166
.090
167
.081
168
.081
169
.081
170
.081
171
.081
172
.081
173
.081
174
.081
175
.081
176
.074
177
.067
178
.067
179
.067
180
.067
181
.067
182
.067
183
.067
184
.060
185
.060
186
.060
187
.060
188
.060
189
.055
190
.055
191
.055
192
.050
193
.050
194
.050
195
.050
196
.045
197
.045
198
.041
199
.041
200
.041
201
.041
202
.041
203
.041
204
.037
205
.037
206
.037
207
.037
208
.037
209
.037
210
.037
211
.033
212
.033
213
.033
214
.030
215
.027
216
.027
217
.027
218
.027
219
.027
220
.025
221
.025
222
.025
223
.025
224
.025
225
.022
226
.022
227
.022
228
.022
229
.020
230
.020
231
.020
232
.018
233
.017
234
.017
235
.017
236
.017
237
.015
238
.014
239
.011
240
.011
241
.011
242
.010
243
.010
244
.010
245
.008
246
.008
247
.006
248

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.85.

Note that scores are relative to this ceiling.

Data: Ferguson2024eighth

Metric: value_delta