Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024lle-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
1.0
25
1.0
26
1.0
27
1.0
28
1.0
29
1.0
30
1.0
31
1.0
32
1.0
33
1.0
34
1.0
35
.967
36
.967
37
.967
38
.967
39
.967
40
.911
41
.911
42
.911
43
.911
44
.911
45
.911
46
.911
47
.875
48
.875
49
.875
50
.875
51
.875
52
.875
53
.825
54
.825
55
.825
56
.825
57
.825
58
.825
59
.793
60
.793
61
.793
62
.747
63
.747
64
.747
65
.747
66
.747
67
.747
68
.718
69
.718
70
.718
71
.718
72
.718
73
.718
74
.676
75
.676
76
.676
77
.676
78
.650
79
.650
80
.650
81
.650
82
.650
83
.612
84
.612
85
.612
86
.612
87
.612
88
.588
89
.588
90
.588
91
.554
92
.554
93
.554
94
.554
95
.554
96
.554
97
.554
98
.554
99
.532
100
.532
101
.532
102
.532
103
.532
104
.532
105
.532
106
.532
107
.502
108
.502
109
.502
110
.502
111
.502
112
.502
113
.502
114
.502
115
.502
116
.502
117
.502
118
.502
119
.482
120
.482
121
.454
122
.454
123
.454
124
.454
125
.454
126
.454
127
.454
128
.454
129
.436
130
.436
131
.436
132
.411
133
.411
134
.411
135
.411
136
.411
137
.411
138
.411
139
.411
140
.411
141
.395
142
.372
143
.372
144
.372
145
.372
146
.372
147
.372
148
.358
149
.358
150
.358
151
.358
152
.337
153
.337
154
.337
155
.337
156
.337
157
.337
158
.337
159
.337
160
.337
161
.324
162
.324
163
.305
164
.305
165
.305
166
.305
167
.305
168
.293
169
.276
170
.276
171
.276
172
.276
173
.276
174
.276
175
.276
176
.276
177
.265
178
.265
179
.250
180
.250
181
.250
182
.250
183
.250
184
.250
185
.250
186
.250
187
.226
188
.226
189
.226
190
.226
191
.205
192
.205
193
.205
194
.205
195
.205
196
.205
197
.205
198
.205
199
.197
200
.186
201
.178
202
.168
203
.168
204
.168
205
.168
206
.161
207
.152
208
.152
209
.152
210
.152
211
.146
212
.138
213
.138
214
.138
215
.138
216
.125
217
.125
218
.125
219
.125
220
.125
221
.113
222
.113
223
.113
224
.113
225
.108
226
.108
227
.092
228
.092
229
.092
230
.069
231
.069
232
.069
233
.069
234
.069
235
.069
236
.062
237
.062
238
.062
239
.056
240
.051
241
.051
242
.049
243
.046
244
.046
245
.025
246
.023
247
248

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.83.

Note that scores are relative to this ceiling.

Data: Ferguson2024lle

Metric: value_delta