Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024lle-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
1.0
25
1.0
26
1.0
27
1.0
28
1.0
29
1.0
30
1.0
31
.967
32
.967
33
.967
34
.911
35
.911
36
.911
37
.911
38
.911
39
.911
40
.911
41
.875
42
.875
43
.875
44
.875
45
.875
46
.825
47
.825
48
.825
49
.825
50
.825
51
.825
52
.793
53
.793
54
.793
55
.747
56
.747
57
.747
58
.747
59
.747
60
.718
61
.718
62
.718
63
.718
64
.718
65
.676
66
.676
67
.676
68
.650
69
.650
70
.650
71
.650
72
.612
73
.612
74
.612
75
.612
76
.588
77
.588
78
.588
79
.554
80
.554
81
.554
82
.554
83
.554
84
.532
85
.532
86
.532
87
.532
88
.532
89
.532
90
.532
91
.532
92
.502
93
.502
94
.502
95
.502
96
.502
97
.502
98
.502
99
.502
100
.502
101
.482
102
.482
103
.454
104
.454
105
.454
106
.454
107
.454
108
.436
109
.436
110
.411
111
.411
112
.411
113
.411
114
.411
115
.411
116
.411
117
.411
118
.395
119
.372
120
.372
121
.372
122
.372
123
.372
124
.358
125
.358
126
.358
127
.358
128
.337
129
.337
130
.337
131
.337
132
.337
133
.337
134
.337
135
.337
136
.337
137
.324
138
.324
139
.305
140
.305
141
.305
142
.305
143
.293
144
.276
145
.276
146
.276
147
.276
148
.276
149
.276
150
.276
151
.265
152
.250
153
.250
154
.250
155
.226
156
.226
157
.226
158
.226
159
.205
160
.205
161
.205
162
.205
163
.205
164
.205
165
.186
166
.178
167
.168
168
.168
169
.168
170
.168
171
.161
172
.152
173
.152
174
.152
175
.152
176
.146
177
.138
178
.138
179
.138
180
.125
181
.125
182
.125
183
.125
184
.125
185
.113
186
.113
187
.113
188
.113
189
.108
190
.108
191
.092
192
.069
193
.069
194
.069
195
.069
196
.069
197
.069
198
.062
199
.062
200
.062
201
.056
202
.051
203
.051
204
.046
205
.046
206
.025
207
.023
208
209

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.83.

Note that scores are relative to this ceiling.

Data: Ferguson2024lle

Metric: value_delta