Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024lle-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
1.0
25
1.0
26
1.0
27
1.0
28
1.0
29
1.0
30
1.0
31
1.0
32
1.0
33
.967
34
.967
35
.967
36
.967
37
.967
38
.911
39
.911
40
.911
41
.911
42
.911
43
.911
44
.911
45
.875
46
.875
47
.875
48
.875
49
.875
50
.875
51
.825
52
.825
53
.825
54
.825
55
.825
56
.825
57
.793
58
.793
59
.793
60
.747
61
.747
62
.747
63
.747
64
.747
65
.747
66
.718
67
.718
68
.718
69
.718
70
.718
71
.718
72
.676
73
.676
74
.676
75
.676
76
.650
77
.650
78
.650
79
.650
80
.650
81
.612
82
.612
83
.612
84
.612
85
.588
86
.588
87
.588
88
.554
89
.554
90
.554
91
.554
92
.554
93
.554
94
.554
95
.554
96
.532
97
.532
98
.532
99
.532
100
.532
101
.532
102
.532
103
.532
104
.502
105
.502
106
.502
107
.502
108
.502
109
.502
110
.502
111
.502
112
.502
113
.502
114
.502
115
.502
116
.482
117
.482
118
.454
119
.454
120
.454
121
.454
122
.454
123
.454
124
.454
125
.454
126
.436
127
.436
128
.436
129
.411
130
.411
131
.411
132
.411
133
.411
134
.411
135
.411
136
.411
137
.411
138
.395
139
.372
140
.372
141
.372
142
.372
143
.372
144
.372
145
.358
146
.358
147
.358
148
.358
149
.337
150
.337
151
.337
152
.337
153
.337
154
.337
155
.337
156
.337
157
.337
158
.324
159
.324
160
.305
161
.305
162
.305
163
.305
164
.305
165
.293
166
.276
167
.276
168
.276
169
.276
170
.276
171
.276
172
.276
173
.276
174
.265
175
.265
176
.250
177
.250
178
.250
179
.250
180
.250
181
.250
182
.250
183
.226
184
.226
185
.226
186
.226
187
.205
188
.205
189
.205
190
.205
191
.205
192
.205
193
.205
194
.205
195
.197
196
.186
197
.178
198
.168
199
.168
200
.168
201
.168
202
.161
203
.152
204
.152
205
.152
206
.152
207
.146
208
.138
209
.138
210
.138
211
.138
212
.125
213
.125
214
.125
215
.125
216
.125
217
.113
218
.113
219
.113
220
.113
221
.108
222
.108
223
.092
224
.092
225
.092
226
.069
227
.069
228
.069
229
.069
230
.069
231
.069
232
.062
233
.062
234
.062
235
.056
236
.051
237
.051
238
.049
239
.046
240
.046
241
.025
242
.023
243
244

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.83.

Note that scores are relative to this ceiling.

Data: Ferguson2024lle

Metric: value_delta