Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024juncture-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
.984
10
.984
11
.984
12
.951
13
.951
14
.951
15
.848
16
.848
17
.848
18
.848
19
.848
20
.819
21
.819
22
.819
23
.819
24
.819
25
.730
26
.730
27
.730
28
.730
29
.730
30
.706
31
.706
32
.706
33
.706
34
.706
35
.706
36
.706
37
.706
38
.706
39
.629
40
.608
41
.608
42
.608
43
.608
44
.608
45
.608
46
.542
47
.524
48
.524
49
.524
50
.524
51
.524
52
.524
53
.524
54
.467
55
.467
56
.451
57
.451
58
.451
59
.451
60
.389
61
.389
62
.389
63
.389
64
.389
65
.389
66
.389
67
.346
68
.346
69
.346
70
.335
71
.335
72
.335
73
.335
74
.335
75
.335
76
.335
77
.335
78
.298
79
.298
80
.288
81
.288
82
.288
83
.288
84
.288
85
.257
86
.248
87
.248
88
.248
89
.248
90
.248
91
.248
92
.248
93
.248
94
.248
95
.214
96
.214
97
.214
98
.191
99
.191
100
.191
101
.184
102
.184
103
.184
104
.184
105
.184
106
.184
107
.184
108
.184
109
.184
110
.184
111
.184
112
.164
113
.159
114
.159
115
.159
116
.159
117
.159
118
.159
119
.159
120
.159
121
.159
122
.137
123
.137
124
.137
125
.137
126
.137
127
.137
128
.118
129
.118
130
.118
131
.118
132
.118
133
.118
134
.118
135
.118
136
.118
137
.118
138
.118
139
.105
140
.102
141
.102
142
.102
143
.102
144
.102
145
.102
146
.102
147
.102
148
.102
149
.102
150
.102
151
.087
152
.087
153
.087
154
.078
155
.075
156
.075
157
.075
158
.075
159
.075
160
.075
161
.075
162
.075
163
.075
164
.065
165
.065
166
.065
167
.065
168
.065
169
.065
170
.065
171
.065
172
.065
173
.065
174
.056
175
.056
176
.056
177
.056
178
.056
179
.056
180
.048
181
.048
182
.048
183
.048
184
.048
185
.048
186
.048
187
.041
188
.041
189
.041
190
.041
191
.041
192
.036
193
.036
194
.036
195
.036
196
.031
197
.031
198
.031
199
.031
200
.027
201
.027
202
.027
203
.027
204
.023
205
.023
206
.020
207
.020
208
.020
209
.020
210
.020
211
.017
212
.017
213
.015
214
.015
215
.015
216
.015
217
.015
218
.013
219
.013
220
.013
221
.013
222
.013
223
.011
224
.011
225
.011
226
.011
227
.009
228
.009
229
.009
230
.009
231
.008
232
.008
233
.008
234
.006
235
.006
236
.005
237
.004
238
.004
239
.004
240
.004
241
.003
242
.003
243
.003
244
.003
245
.002
246
.001
247
248

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.77.

Note that scores are relative to this ceiling.

Data: Ferguson2024juncture

Metric: value_delta