Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024round_f-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
.961
17
.961
18
.961
19
.961
20
.961
21
.961
22
.961
23
.906
24
.906
25
.906
26
.906
27
.906
28
.906
29
.906
30
.867
31
.867
32
.867
33
.867
34
.867
35
.867
36
.867
37
.818
38
.818
39
.818
40
.783
41
.783
42
.783
43
.783
44
.783
45
.783
46
.783
47
.783
48
.739
49
.739
50
.739
51
.739
52
.707
53
.707
54
.707
55
.707
56
.707
57
.707
58
.667
59
.667
60
.667
61
.667
62
.667
63
.667
64
.638
65
.638
66
.638
67
.638
68
.638
69
.638
70
.638
71
.638
72
.638
73
.638
74
.638
75
.638
76
.602
77
.576
78
.576
79
.576
80
.576
81
.576
82
.576
83
.576
84
.544
85
.544
86
.544
87
.544
88
.544
89
.544
90
.544
91
.544
92
.544
93
.520
94
.520
95
.520
96
.520
97
.470
98
.470
99
.470
100
.470
101
.470
102
.470
103
.443
104
.443
105
.424
106
.424
107
.424
108
.424
109
.424
110
.424
111
.400
112
.400
113
.400
114
.383
115
.383
116
.383
117
.383
118
.383
119
.383
120
.383
121
.361
122
.346
123
.346
124
.346
125
.346
126
.346
127
.346
128
.346
129
.326
130
.326
131
.326
132
.312
133
.312
134
.312
135
.312
136
.312
137
.312
138
.312
139
.282
140
.282
141
.282
142
.282
143
.282
144
.282
145
.255
146
.255
147
.255
148
.255
149
.255
150
.255
151
.255
152
.255
153
.255
154
.255
155
.255
156
.230
157
.230
158
.230
159
.230
160
.230
161
.230
162
.230
163
.230
164
.230
165
.208
166
.208
167
.208
168
.208
169
.208
170
.208
171
.208
172
.208
173
.208
174
.208
175
.187
176
.187
177
.187
178
.187
179
.187
180
.187
181
.187
182
.187
183
.187
184
.187
185
.187
186
.169
187
.169
188
.160
189
.160
190
.153
191
.153
192
.153
193
.153
194
.153
195
.153
196
.153
197
.138
198
.138
199
.138
200
.138
201
.138
202
.138
203
.138
204
.138
205
.138
206
.125
207
.113
208
.113
209
.113
210
.113
211
.113
212
.102
213
.102
214
.102
215
.102
216
.102
217
.102
218
.092
219
.092
220
.092
221
.092
222
.092
223
.092
224
.092
225
.083
226
.075
227
.075
228
.075
229
.075
230
.075
231
.075
232
.068
233
.061
234
.061
235
.055
236
.055
237
.050
238
.050
239
.033
240
.033
241
.030
242
.027
243
.018
244
.012

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.87.

Note that scores are relative to this ceiling.

Data: Ferguson2024round_f

Metric: value_delta