Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024round_f-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
.961
13
.961
14
.961
15
.961
16
.961
17
.961
18
.961
19
.906
20
.906
21
.906
22
.906
23
.906
24
.906
25
.867
26
.867
27
.867
28
.867
29
.867
30
.867
31
.818
32
.818
33
.818
34
.783
35
.783
36
.783
37
.783
38
.783
39
.783
40
.783
41
.783
42
.739
43
.739
44
.739
45
.707
46
.707
47
.707
48
.707
49
.707
50
.707
51
.667
52
.667
53
.667
54
.667
55
.667
56
.667
57
.638
58
.638
59
.638
60
.638
61
.638
62
.638
63
.638
64
.638
65
.638
66
.638
67
.638
68
.638
69
.602
70
.576
71
.576
72
.576
73
.576
74
.576
75
.576
76
.544
77
.544
78
.544
79
.544
80
.544
81
.544
82
.544
83
.544
84
.544
85
.520
86
.520
87
.520
88
.470
89
.470
90
.470
91
.470
92
.470
93
.443
94
.443
95
.424
96
.424
97
.424
98
.424
99
.424
100
.424
101
.400
102
.400
103
.400
104
.383
105
.383
106
.383
107
.383
108
.383
109
.383
110
.383
111
.361
112
.346
113
.346
114
.346
115
.346
116
.346
117
.346
118
.346
119
.326
120
.326
121
.326
122
.312
123
.312
124
.312
125
.312
126
.312
127
.312
128
.312
129
.282
130
.282
131
.282
132
.282
133
.282
134
.255
135
.255
136
.255
137
.255
138
.255
139
.255
140
.255
141
.255
142
.255
143
.255
144
.230
145
.230
146
.230
147
.230
148
.230
149
.230
150
.230
151
.230
152
.230
153
.208
154
.208
155
.208
156
.208
157
.208
158
.208
159
.208
160
.208
161
.208
162
.187
163
.187
164
.187
165
.187
166
.187
167
.187
168
.187
169
.187
170
.187
171
.187
172
.169
173
.169
174
.160
175
.160
176
.153
177
.153
178
.153
179
.153
180
.153
181
.153
182
.153
183
.138
184
.138
185
.138
186
.138
187
.138
188
.138
189
.138
190
.138
191
.125
192
.113
193
.113
194
.113
195
.113
196
.113
197
.102
198
.102
199
.102
200
.102
201
.102
202
.102
203
.092
204
.092
205
.092
206
.092
207
.092
208
.092
209
.083
210
.075
211
.075
212
.075
213
.075
214
.075
215
.075
216
.068
217
.061
218
.061
219
.055
220
.055
221
.050
222
.050
223
.033
224
.033
225
.030
226
.027
227
.018
228
.012

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.87.

Note that scores are relative to this ceiling.

Data: Ferguson2024round_f

Metric: value_delta