Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024round_v-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.000
21
1.000
22
1.000
23
1.000
24
1.000
25
1.000
26
1.000
27
1.000
28
1.000
29
1.000
30
1.000
31
1.000
32
.924
33
.924
34
.924
35
.924
36
.924
37
.924
38
.924
39
.924
40
.905
41
.905
42
.905
43
.905
44
.905
45
.836
46
.836
47
.836
48
.836
49
.836
50
.836
51
.836
52
.836
53
.820
54
.820
55
.820
56
.820
57
.820
58
.820
59
.820
60
.820
61
.757
62
.757
63
.757
64
.757
65
.757
66
.757
67
.742
68
.742
69
.742
70
.742
71
.742
72
.686
73
.686
74
.686
75
.686
76
.686
77
.672
78
.672
79
.672
80
.672
81
.672
82
.672
83
.672
84
.672
85
.672
86
.672
87
.621
88
.621
89
.621
90
.621
91
.621
92
.621
93
.621
94
.621
95
.621
96
.621
97
.621
98
.609
99
.609
100
.609
101
.609
102
.609
103
.609
104
.609
105
.609
106
.609
107
.609
108
.562
109
.562
110
.562
111
.562
112
.551
113
.551
114
.551
115
.551
116
.551
117
.551
118
.551
119
.551
120
.551
121
.509
122
.509
123
.509
124
.509
125
.509
126
.499
127
.499
128
.499
129
.499
130
.499
131
.461
132
.461
133
.461
134
.461
135
.461
136
.461
137
.417
138
.417
139
.417
140
.417
141
.417
142
.417
143
.409
144
.409
145
.409
146
.409
147
.409
148
.409
149
.409
150
.409
151
.409
152
.409
153
.378
154
.378
155
.378
156
.378
157
.378
158
.378
159
.370
160
.370
161
.370
162
.370
163
.370
164
.370
165
.370
166
.370
167
.370
168
.342
169
.342
170
.342
171
.335
172
.335
173
.335
174
.335
175
.310
176
.304
177
.304
178
.304
179
.304
180
.281
181
.281
182
.275
183
.275
184
.275
185
.275
186
.275
187
.275
188
.254
189
.254
190
.254
191
.249
192
.249
193
.249
194
.249
195
.249
196
.230
197
.230
198
.230
199
.230
200
.230
201
.230
202
.230
203
.225
204
.225
205
.225
206
.225
207
.225
208
.225
209
.225
210
.225
211
.208
212
.208
213
.204
214
.204
215
.204
216
.204
217
.189
218
.185
219
.185
220
.185
221
.171
222
.167
223
.155
224
.155
225
.140
226
.137
227
.137
228
.124
229
.102
230
.083
231
.076
232
.070
233
.068
234
.068
235
.068
236
.062
237
.051
238
.051
239
.035
240
.034
241
.025
242
.025
243
.025
244
.023

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.85.

Note that scores are relative to this ceiling.

Data: Ferguson2024round_v

Metric: value_delta