Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024llh-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
1.0
25
1.0
26
1.0
27
1.0
28
1.0
29
1.0
30
1.0
31
1.0
32
1.0
33
1.0
34
1.0
35
1.0
36
1.0
37
1.0
38
1.0
39
.979
40
.979
41
.951
42
.951
43
.951
44
.951
45
.951
46
.951
47
.951
48
.888
49
.888
50
.888
51
.888
52
.888
53
.888
54
.888
55
.862
56
.862
57
.862
58
.862
59
.862
60
.862
61
.862
62
.805
63
.805
64
.805
65
.805
66
.805
67
.805
68
.805
69
.805
70
.805
71
.782
72
.782
73
.782
74
.782
75
.782
76
.782
77
.782
78
.730
79
.730
80
.730
81
.730
82
.730
83
.730
84
.709
85
.709
86
.709
87
.709
88
.709
89
.709
90
.709
91
.709
92
.709
93
.709
94
.662
95
.662
96
.643
97
.643
98
.643
99
.643
100
.643
101
.643
102
.643
103
.643
104
.643
105
.601
106
.601
107
.601
108
.601
109
.583
110
.583
111
.583
112
.583
113
.583
114
.583
115
.583
116
.583
117
.583
118
.545
119
.529
120
.529
121
.529
122
.529
123
.529
124
.529
125
.529
126
.529
127
.529
128
.529
129
.529
130
.529
131
.529
132
.529
133
.529
134
.494
135
.494
136
.480
137
.480
138
.480
139
.448
140
.448
141
.435
142
.435
143
.435
144
.435
145
.435
146
.435
147
.435
148
.435
149
.406
150
.406
151
.406
152
.395
153
.395
154
.395
155
.395
156
.395
157
.395
158
.369
159
.369
160
.369
161
.369
162
.358
163
.358
164
.358
165
.358
166
.334
167
.334
168
.325
169
.325
170
.325
171
.325
172
.325
173
.303
174
.294
175
.294
176
.294
177
.294
178
.275
179
.267
180
.267
181
.267
182
.267
183
.267
184
.242
185
.242
186
.242
187
.242
188
.242
189
.242
190
.242
191
.242
192
.242
193
.242
194
.242
195
.242
196
.226
197
.220
198
.205
199
.199
200
.199
201
.199
202
.181
203
.181
204
.181
205
.164
206
.164
207
.164
208
.164
209
.164
210
.164
211
.164
212
.164
213
.149
214
.149
215
.135
216
.135
217
.135
218
.135
219
.126
220
.122
221
.122
222
.111
223
.111
224
.111
225
.101
226
.101
227
.101
228
.083
229
.083
230
.075
231
.068
232
.068
233
.068
234
.068
235
.062
236
.062
237
.051
238
.051
239
.046
240
.046
241
.046
242
.042
243
.042
244
.034
245
.031
246
.016
247
.016
248

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.81.

Note that scores are relative to this ceiling.

Data: Ferguson2024llh

Metric: value_delta