Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024llh-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
1.0
25
1.0
26
1.0
27
1.0
28
1.0
29
1.0
30
1.0
31
1.0
32
1.0
33
.979
34
.979
35
.951
36
.951
37
.951
38
.951
39
.951
40
.951
41
.951
42
.888
43
.888
44
.888
45
.888
46
.888
47
.888
48
.862
49
.862
50
.862
51
.862
52
.862
53
.862
54
.862
55
.805
56
.805
57
.805
58
.805
59
.805
60
.805
61
.805
62
.782
63
.782
64
.782
65
.782
66
.782
67
.782
68
.730
69
.730
70
.730
71
.730
72
.730
73
.709
74
.709
75
.709
76
.709
77
.709
78
.709
79
.709
80
.709
81
.709
82
.709
83
.662
84
.662
85
.643
86
.643
87
.643
88
.643
89
.643
90
.643
91
.601
92
.601
93
.583
94
.583
95
.583
96
.583
97
.583
98
.583
99
.583
100
.583
101
.545
102
.529
103
.529
104
.529
105
.529
106
.529
107
.529
108
.529
109
.529
110
.529
111
.529
112
.529
113
.529
114
.494
115
.494
116
.480
117
.480
118
.480
119
.448
120
.448
121
.435
122
.435
123
.435
124
.435
125
.435
126
.406
127
.406
128
.406
129
.395
130
.395
131
.369
132
.369
133
.369
134
.369
135
.358
136
.358
137
.358
138
.358
139
.334
140
.325
141
.325
142
.325
143
.325
144
.325
145
.303
146
.294
147
.294
148
.294
149
.294
150
.275
151
.267
152
.267
153
.267
154
.267
155
.242
156
.242
157
.242
158
.242
159
.242
160
.242
161
.242
162
.242
163
.242
164
.242
165
.242
166
.226
167
.205
168
.199
169
.199
170
.199
171
.181
172
.164
173
.164
174
.164
175
.164
176
.164
177
.164
178
.164
179
.164
180
.149
181
.149
182
.135
183
.135
184
.135
185
.126
186
.122
187
.122
188
.111
189
.111
190
.111
191
.083
192
.083
193
.068
194
.068
195
.068
196
.062
197
.062
198
.051
199
.051
200
.046
201
.046
202
.046
203
.042
204
.042
205
.034
206
.031
207
.016
208
.016
209

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.81.

Note that scores are relative to this ceiling.

Data: Ferguson2024llh

Metric: value_delta