Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024quarter-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
.950
15
.950
16
.950
17
.950
18
.950
19
.950
20
.950
21
.950
22
.950
23
.950
24
.950
25
.923
26
.923
27
.923
28
.923
29
.923
30
.860
31
.836
32
.836
33
.836
34
.836
35
.836
36
.836
37
.836
38
.779
39
.779
40
.757
41
.757
42
.757
43
.757
44
.757
45
.706
46
.706
47
.706
48
.706
49
.706
50
.686
51
.686
52
.686
53
.686
54
.686
55
.686
56
.686
57
.686
58
.639
59
.621
60
.621
61
.621
62
.579
63
.563
64
.563
65
.563
66
.563
67
.563
68
.563
69
.563
70
.563
71
.524
72
.524
73
.510
74
.510
75
.510
76
.510
77
.510
78
.510
79
.510
80
.510
81
.510
82
.510
83
.510
84
.510
85
.510
86
.510
87
.510
88
.510
89
.510
90
.475
91
.475
92
.475
93
.475
94
.475
95
.475
96
.475
97
.461
98
.461
99
.461
100
.461
101
.461
102
.461
103
.430
104
.430
105
.430
106
.430
107
.418
108
.418
109
.418
110
.418
111
.390
112
.390
113
.379
114
.379
115
.379
116
.379
117
.379
118
.379
119
.379
120
.353
121
.343
122
.343
123
.320
124
.311
125
.311
126
.311
127
.311
128
.311
129
.311
130
.289
131
.289
132
.281
133
.281
134
.281
135
.281
136
.281
137
.281
138
.262
139
.262
140
.255
141
.255
142
.255
143
.255
144
.255
145
.255
146
.255
147
.255
148
.255
149
.255
150
.231
151
.231
152
.231
153
.231
154
.231
155
.231
156
.231
157
.231
158
.215
159
.209
160
.209
161
.209
162
.209
163
.209
164
.209
165
.209
166
.209
167
.189
168
.189
169
.189
170
.189
171
.171
172
.171
173
.171
174
.171
175
.171
176
.171
177
.171
178
.171
179
.171
180
.171
181
.171
182
.171
183
.155
184
.155
185
.155
186
.155
187
.155
188
.155
189
.155
190
.155
191
.141
192
.141
193
.141
194
.141
195
.141
196
.141
197
.141
198
.141
199
.141
200
.141
201
.141
202
.127
203
.127
204
.127
205
.127
206
.127
207
.127
208
.127
209
.119
210
.115
211
.115
212
.115
213
.115
214
.115
215
.104
216
.104
217
.095
218
.095
219
.095
220
.095
221
.095
222
.086
223
.078
224
.078
225
.078
226
.078
227
.078
228
.070
229
.070
230
.064
231
.064
232
.064
233
.064
234
.058
235
.052
236
.047
237
.043
238
.043
239
.021
240
.019
241
242
243

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.88.

Note that scores are relative to this ceiling.

Data: Ferguson2024quarter

Metric: value_delta