Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024quarter-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
.950
15
.950
16
.950
17
.950
18
.950
19
.950
20
.950
21
.950
22
.950
23
.950
24
.950
25
.950
26
.923
27
.923
28
.923
29
.923
30
.923
31
.860
32
.836
33
.836
34
.836
35
.836
36
.836
37
.836
38
.836
39
.779
40
.779
41
.757
42
.757
43
.757
44
.757
45
.757
46
.706
47
.706
48
.706
49
.706
50
.706
51
.686
52
.686
53
.686
54
.686
55
.686
56
.686
57
.686
58
.686
59
.639
60
.621
61
.621
62
.621
63
.579
64
.563
65
.563
66
.563
67
.563
68
.563
69
.563
70
.563
71
.563
72
.524
73
.524
74
.510
75
.510
76
.510
77
.510
78
.510
79
.510
80
.510
81
.510
82
.510
83
.510
84
.510
85
.510
86
.510
87
.510
88
.510
89
.510
90
.510
91
.510
92
.475
93
.475
94
.475
95
.475
96
.475
97
.475
98
.475
99
.461
100
.461
101
.461
102
.461
103
.461
104
.461
105
.430
106
.430
107
.430
108
.430
109
.418
110
.418
111
.418
112
.418
113
.390
114
.390
115
.379
116
.379
117
.379
118
.379
119
.379
120
.379
121
.379
122
.353
123
.343
124
.343
125
.320
126
.311
127
.311
128
.311
129
.311
130
.311
131
.311
132
.289
133
.289
134
.281
135
.281
136
.281
137
.281
138
.281
139
.281
140
.262
141
.262
142
.255
143
.255
144
.255
145
.255
146
.255
147
.255
148
.255
149
.255
150
.255
151
.255
152
.255
153
.255
154
.231
155
.231
156
.231
157
.231
158
.231
159
.231
160
.231
161
.231
162
.215
163
.209
164
.209
165
.209
166
.209
167
.209
168
.209
169
.209
170
.209
171
.189
172
.189
173
.189
174
.189
175
.171
176
.171
177
.171
178
.171
179
.171
180
.171
181
.171
182
.171
183
.171
184
.171
185
.171
186
.171
187
.155
188
.155
189
.155
190
.155
191
.155
192
.155
193
.155
194
.155
195
.141
196
.141
197
.141
198
.141
199
.141
200
.141
201
.141
202
.141
203
.141
204
.141
205
.141
206
.127
207
.127
208
.127
209
.127
210
.127
211
.127
212
.127
213
.119
214
.115
215
.115
216
.115
217
.115
218
.115
219
.104
220
.104
221
.095
222
.095
223
.095
224
.095
225
.095
226
.086
227
.078
228
.078
229
.078
230
.078
231
.078
232
.070
233
.070
234
.064
235
.064
236
.064
237
.064
238
.058
239
.052
240
.047
241
.043
242
.043
243
.021
244
.019
245
246
247

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.88.

Note that scores are relative to this ceiling.

Data: Ferguson2024quarter

Metric: value_delta