Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Ferguson2024tilted_line-value_delta")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.0
5
1.0
6
1.0
7
1.0
8
1.0
9
1.0
10
1.0
11
1.0
12
1.0
13
1.0
14
1.0
15
1.0
16
1.0
17
1.0
18
1.0
19
1.0
20
1.0
21
1.0
22
1.0
23
1.0
24
.975
25
.975
26
.975
27
.975
28
.975
29
.975
30
.975
31
.917
32
.917
33
.917
34
.917
35
.917
36
.917
37
.917
38
.917
39
.917
40
.917
41
.883
42
.883
43
.883
44
.883
45
.883
46
.883
47
.883
48
.883
49
.883
50
.883
51
.831
52
.831
53
.831
54
.831
55
.831
56
.831
57
.831
58
.831
59
.831
60
.831
61
.831
62
.831
63
.831
64
.800
65
.800
66
.800
67
.800
68
.800
69
.800
70
.800
71
.800
72
.800
73
.800
74
.753
75
.753
76
.753
77
.753
78
.753
79
.753
80
.753
81
.753
82
.725
83
.682
84
.682
85
.682
86
.682
87
.682
88
.682
89
.682
90
.682
91
.682
92
.682
93
.682
94
.682
95
.657
96
.657
97
.657
98
.657
99
.657
100
.657
101
.657
102
.657
103
.657
104
.657
105
.657
106
.657
107
.657
108
.657
109
.657
110
.657
111
.657
112
.657
113
.657
114
.657
115
.657
116
.657
117
.657
118
.657
119
.657
120
.657
121
.657
122
.657
123
.657
124
.657
125
.657
126
.657
127
.657
128
.657
129
.657
130
.657
131
.618
132
.618
133
.618
134
.618
135
.618
136
.618
137
.618
138
.595
139
.595
140
.595
141
.595
142
.560
143
.560
144
.560
145
.539
146
.539
147
.539
148
.539
149
.539
150
.539
151
.507
152
.507
153
.507
154
.507
155
.507
156
.489
157
.489
158
.489
159
.489
160
.489
161
.460
162
.460
163
.460
164
.460
165
.460
166
.460
167
.443
168
.443
169
.443
170
.443
171
.443
172
.443
173
.443
174
.443
175
.443
176
.417
177
.417
178
.417
179
.401
180
.401
181
.401
182
.401
183
.401
184
.377
185
.377
186
.377
187
.377
188
.377
189
.377
190
.377
191
.377
192
.377
193
.363
194
.363
195
.363
196
.363
197
.363
198
.342
199
.342
200
.329
201
.329
202
.329
203
.329
204
.310
205
.310
206
.310
207
.310
208
.310
209
.310
210
.310
211
.310
212
.298
213
.298
214
.281
215
.281
216
.281
217
.270
218
.270
219
.254
220
.254
221
.245
222
.245
223
.245
224
.230
225
.230
226
.222
227
.222
228
.222
229
.222
230
.222
231
.209
232
.189
233
.182
234
.171
235
.165
236
.155
237
.141
238
.141
239
.135
240
.135
241
.135
242
.116
243
.111
244

Benchmark bibtex

        @misc{ferguson_ngo_lee_dicarlo_schrimpf_2024,
         title={How Well is Visual Search Asymmetry predicted by a Binary-Choice, Rapid, Accuracy-based Visual-search, Oddball-detection (BRAVO) task?},
         url={osf.io/5ba3n},
         DOI={10.17605/OSF.IO/5BA3N},
         publisher={OSF},
         author={Ferguson, Michael E, Jr and Ngo, Jerry and Lee, Michael and DiCarlo, James and Schrimpf, Martin},
         year={2024},
         month={Jun}
}

Ceiling

0.91.

Note that scores are relative to this ceiling.

Data: Ferguson2024tilted_line

Metric: value_delta