Sample stimuli
How to use
from brainscore_vision import load_benchmark
benchmark = load_benchmark("ImageNet-C-noise-top1")
score = benchmark(my_model)
Model scores
Min Alignment
Max Alignment
|
Rank |
Model |
Score |
|---|---|---|
| 1 |
.742
|
|
| 2 |
.715
|
|
| 3 |
.708
|
|
| 4 |
.700
|
|
| 5 |
.692
|
|
| 6 |
.670
|
|
| 7 |
.651
|
|
| 8 |
.636
|
|
| 9 |
.634
|
|
| 10 |
.633
|
|
| 11 |
.631
|
|
| 12 |
.630
|
|
| 13 |
.618
|
|
| 14 |
.614
|
|
| 15 |
.608
|
|
| 16 |
.597
|
|
| 17 |
.595
|
|
| 18 |
.594
|
|
| 19 |
.593
|
|
| 20 |
.587
|
|
| 21 |
.582
|
|
| 22 |
.577
|
|
| 23 |
.570
|
|
| 24 |
.566
|
|
| 25 |
.561
|
|
| 26 |
.555
|
|
| 27 |
.554
|
|
| 28 |
.548
|
|
| 29 |
.548
|
|
| 30 |
.548
|
|
| 31 |
.539
|
|
| 32 |
.538
|
|
| 33 |
.532
|
|
| 34 |
.527
|
|
| 35 |
.526
|
|
| 36 |
.523
|
|
| 37 |
.517
|
|
| 38 |
.514
|
|
| 39 |
.513
|
|
| 40 |
.513
|
|
| 41 |
.512
|
|
| 42 |
.511
|
|
| 43 |
.504
|
|
| 44 |
.499
|
|
| 45 |
.491
|
|
| 46 |
.484
|
|
| 47 |
.482
|
|
| 48 |
.476
|
|
| 49 |
.470
|
|
| 50 |
.462
|
|
| 51 |
.457
|
|
| 52 |
.456
|
|
| 53 |
.454
|
|
| 54 |
.444
|
|
| 55 |
.442
|
|
| 56 |
.428
|
|
| 57 |
.420
|
|
| 58 |
.413
|
|
| 59 |
.412
|
|
| 60 |
.408
|
|
| 61 |
.404
|
|
| 62 |
.400
|
|
| 63 |
.399
|
|
| 64 |
.399
|
|
| 65 |
.396
|
|
| 66 |
.391
|
|
| 67 |
.390
|
|
| 68 |
.389
|
|
| 69 |
.389
|
|
| 70 |
.388
|
|
| 71 |
.388
|
|
| 72 |
.388
|
|
| 73 |
.387
|
|
| 74 |
.386
|
|
| 75 |
.385
|
|
| 76 |
.381
|
|
| 77 |
.381
|
|
| 78 |
.379
|
|
| 79 |
.376
|
|
| 80 |
.375
|
|
| 81 |
.374
|
|
| 82 |
.369
|
|
| 83 |
.369
|
|
| 84 |
.366
|
|
| 85 |
.366
|
|
| 86 |
.364
|
|
| 87 |
.363
|
|
| 88 |
.363
|
|
| 89 |
.362
|
|
| 90 |
.360
|
|
| 91 |
.355
|
|
| 92 |
.353
|
|
| 93 |
.349
|
|
| 94 |
.344
|
|
| 95 |
.344
|
|
| 96 |
.344
|
|
| 97 |
.341
|
|
| 98 |
.338
|
|
| 99 |
.337
|
|
| 100 |
.334
|
|
| 101 |
.332
|
|
| 102 |
.330
|
|
| 103 |
.327
|
|
| 104 |
.327
|
|
| 105 |
.325
|
|
| 106 |
.317
|
|
| 107 |
.316
|
|
| 108 |
.309
|
|
| 109 |
.304
|
|
| 110 |
.304
|
|
| 111 |
.302
|
|
| 112 |
.296
|
|
| 113 |
.284
|
|
| 114 |
.284
|
|
| 115 |
.283
|
|
| 116 |
.282
|
|
| 117 |
.272
|
|
| 118 |
.269
|
|
| 119 |
.267
|
|
| 120 |
.265
|
|
| 121 |
.262
|
|
| 122 |
.262
|
|
| 123 |
.260
|
|
| 124 |
.256
|
|
| 125 |
.253
|
|
| 126 |
.253
|
|
| 127 |
.252
|
|
| 128 |
.252
|
|
| 129 |
.250
|
|
| 130 |
.248
|
|
| 131 |
.248
|
|
| 132 |
.248
|
|
| 133 |
.245
|
|
| 134 |
.244
|
|
| 135 |
.243
|
|
| 136 |
.242
|
|
| 137 |
.239
|
|
| 138 |
.237
|
|
| 139 |
.228
|
|
| 140 |
.228
|
|
| 141 |
.228
|
|
| 142 |
.228
|
|
| 143 |
.228
|
|
| 144 |
.227
|
|
| 145 |
.227
|
|
| 146 |
.226
|
|
| 147 |
.222
|
|
| 148 |
.217
|
|
| 149 |
.215
|
|
| 150 |
.214
|
|
| 151 |
.210
|
|
| 152 |
.210
|
|
| 153 |
.209
|
|
| 154 |
.209
|
|
| 155 |
.207
|
|
| 156 |
.204
|
|
| 157 |
.201
|
|
| 158 |
.199
|
|
| 159 |
.199
|
|
| 160 |
.196
|
|
| 161 |
.196
|
|
| 162 |
.195
|
|
| 163 |
.194
|
|
| 164 |
.194
|
|
| 165 |
.194
|
|
| 166 |
.193
|
|
| 167 |
.193
|
|
| 168 |
.186
|
|
| 169 |
.186
|
|
| 170 |
.184
|
|
| 171 |
.182
|
|
| 172 |
.178
|
|
| 173 |
.178
|
|
| 174 |
.176
|
|
| 175 |
.174
|
|
| 176 |
.173
|
|
| 177 |
.170
|
|
| 178 |
.169
|
|
| 179 |
.166
|
|
| 180 |
.152
|
|
| 181 |
.151
|
|
| 182 |
.151
|
|
| 183 |
.148
|
|
| 184 |
.147
|
|
| 185 |
.141
|
|
| 186 |
.139
|
|
| 187 |
.139
|
|
| 188 |
.136
|
|
| 189 |
.131
|
|
| 190 |
.131
|
|
| 191 |
.130
|
|
| 192 |
.128
|
|
| 193 |
.125
|
|
| 194 |
.124
|
|
| 195 |
.123
|
|
| 196 |
.121
|
|
| 197 |
.118
|
|
| 198 |
.115
|
|
| 199 |
.114
|
|
| 200 |
.113
|
|
| 201 |
.111
|
|
| 202 |
.110
|
|
| 203 |
.109
|
|
| 204 |
.107
|
|
| 205 |
.105
|
|
| 206 |
.105
|
|
| 207 |
.100
|
|
| 208 |
.099
|
|
| 209 |
.099
|
|
| 210 |
.099
|
|
| 211 |
.099
|
|
| 212 |
.096
|
|
| 213 |
.092
|
|
| 214 |
.091
|
|
| 215 |
.090
|
|
| 216 |
.087
|
|
| 217 |
.086
|
|
| 218 |
.079
|
|
| 219 |
.077
|
|
| 220 |
.077
|
|
| 221 |
.059
|
|
| 222 |
.053
|
|
| 223 |
.043
|
|
| 224 |
.012
|
|
| 225 |
.007
|
|
| 226 |
.006
|
|
| 227 |
.003
|
|
| 228 |
.003
|
|
| 229 |
.002
|
|
| 230 |
.001
|
|
| 231 |
.001
|
|
| 232 |
.001
|
|
| 233 |
.001
|
|
| 234 |
.001
|
|
| 235 |
.001
|
|
| 236 |
.001
|
|
| 237 |
.001
|
|
| 238 |
.001
|
|
| 239 |
.001
|
|
| 240 |
.001
|
|
| 241 |
.000
|
|
| 242 |
|
|
| 243 |
|
|
| 244 |
|
|
| 245 |
|
|
| 246 |
|
|
| 247 |
|
|
| 248 |
|
|
| 249 |
|
|
| 250 |
|
|
| 251 |
|
|
| 252 |
|
|
| 253 |
|
|
| 254 |
|
|
| 255 |
|
|
| 256 |
|
|
| 257 |
|
|
| 258 |
|
|
| 259 |
|
|
| 260 |
|
|
| 261 |
|
|
| 262 |
|
|
| 263 |
|
|
| 264 |
|
|
| 265 |
|
|
| 266 |
|
|
| 267 |
|
|
| 268 |
|
|
| 269 |
|
|
| 270 |
|
|
| 271 |
|
|
| 272 |
|
|
| 273 |
|
|
| 274 |
|
|
| 275 |
|
|
| 276 |
|
|
| 277 |
|
|
| 278 |
|
|
| 279 |
|
|
| 280 |
|
|
| 281 |
|
|
| 282 |
|
|
| 283 |
|
|
| 284 |
|
|
| 285 |
|
|
| 286 |
|
|
| 287 |
|
|
| 288 |
|
|
| 289 |
|
|
| 290 |
|
|
| 291 |
|
|
| 292 |
|
|
| 293 |
|
|
| 294 |
|
|
| 295 |
|
|
| 296 |
|
|
| 297 |
|
|
| 298 |
|
|
| 299 |
|
|
| 300 |
|
|
| 301 |
|
|
| 302 |
|
|
| 303 |
|
|
| 304 |
|
|
| 305 |
|
|
| 306 |
|
|
| 307 |
|
|
| 308 |
|
|
| 309 |
|
|
| 310 |
|
|
| 311 |
|
|
| 312 |
|
|
| 313 |
|
|
| 314 |
|
|
| 315 |
|
|
| 316 |
|
|
| 317 |
|
|
| 318 |
|
|
| 319 |
|
|
| 320 |
|
|
| 321 |
|
|
| 322 |
|
|
| 323 |
|
|
| 324 |
|
|
| 325 |
|
|
| 326 |
|
|
| 327 |
|
|
| 328 |
|
|
| 329 |
|
|
| 330 |
|
|
| 331 |
|
|
| 332 |
|
|
| 333 |
|
|
| 334 |
|
|
| 335 |
|
|
| 336 |
|
|
| 337 |
|
|
| 338 |
|
|
| 339 |
|
|
| 340 |
|
|
| 341 |
|
|
| 342 |
|
|
| 343 |
|
|
| 344 |
|
|
| 345 |
|
|
| 346 |
|
|
| 347 |
|
|
| 348 |
|
|
| 349 |
|
|
| 350 |
|
|
| 351 |
|
|
| 352 |
|
|
| 353 |
|
|
| 354 |
|
|
| 355 |
|
|
| 356 |
|
|
| 357 |
|
|
| 358 |
|
|
| 359 |
|
|
| 360 |
|
|
| 361 |
|
|
| 362 |
|
|
| 363 |
|
|
| 364 |
|
|
| 365 |
|
|
| 366 |
|
|
| 367 |
|
|
| 368 |
|
|
| 369 |
|
|
| 370 |
|
|
| 371 |
|
|
| 372 |
|
|
| 373 |
|
|
| 374 |
|
|
| 375 |
|
|
| 376 |
|
|
| 377 |
|
|
| 378 |
|
|
| 379 |
|
|
| 380 |
|
|
| 381 |
|
|
| 382 |
|
|
| 383 |
|
|
| 384 |
|
|
| 385 |
|
|
| 386 |
|
|
| 387 |
|
|
| 388 |
|
|
| 389 |
|
|
| 390 |
|
|
| 391 |
|
|
| 392 |
|
|
| 393 |
|
|
| 394 |
|
|
| 395 |
|
|
| 396 |
|
|
| 397 |
|
|
| 398 |
|
|
| 399 |
|
|
| 400 |
|
|
| 401 |
|
|
| 402 |
|
|
| 403 |
|
|
| 404 |
|
|
| 405 |
|
Benchmark bibtex
@ARTICLE{Hendrycks2019-di,
title = "Benchmarking Neural Network Robustness to Common Corruptions
and Perturbations",
author = "Hendrycks, Dan and Dietterich, Thomas",
abstract = "In this paper we establish rigorous benchmarks for image
classifier robustness. Our first benchmark, ImageNet-C,
standardizes and expands the corruption robustness topic,
while showing which classifiers are preferable in
safety-critical applications. Then we propose a new dataset
called ImageNet-P which enables researchers to benchmark a
classifier's robustness to common perturbations. Unlike
recent robustness research, this benchmark evaluates
performance on common corruptions and perturbations not
worst-case adversarial perturbations. We find that there are
negligible changes in relative corruption robustness from
AlexNet classifiers to ResNet classifiers. Afterward we
discover ways to enhance corruption and perturbation
robustness. We even find that a bypassed adversarial defense
provides substantial common perturbation robustness.
Together our benchmarks may aid future work toward networks
that robustly generalize.",
month = mar,
year = 2019,
archivePrefix = "arXiv",
primaryClass = "cs.LG",
eprint = "1903.12261",
url = "https://arxiv.org/abs/1903.12261"
}
Ceiling
1.00.Note that scores are relative to this ceiling.
Data: ImageNet-C-noise
Metric: top1