Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-circular_variance")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.984
2
.982
3
.975
4
.973
5
.973
6
.971
7
.969
8
.966
9
.961
10
.962
11
.958
12
.958
13
.955
14
.951
15
.949
16
.946
17
.947
18
.946
19
.944
20
.942
21
.942
22
.942
23
.941
24
.938
25
.936
26
.935
27
.935
28
.934
29
.930
30
.929
31
.926
32
.925
33
.924
34
.923
35
.923
36
.922
37
.921
38
.921
39
.919
40
.919
41
.918
42
.917
43
.916
44
.915
45
.916
46
.912
47
.912
48
.912
49
.911
50
.909
51
.909
52
.908
53
.906
54
.907
55
.905
56
.903
57
.902
58
.900
59
.899
60
.897
61
.898
62
.895
63
.896
64
.896
65
.893
66
.893
67
.892
68
.892
69
.892
70
.890
71
.890
72
.889
73
.889
74
.887
75
.884
76
.885
77
.884
78
.882
79
.882
80
.882
81
.879
82
.878
83
.878
84
.877
85
.876
86
.875
87
.875
88
.873
89
.874
90
.873
91
.872
92
.872
93
.871
94
.871
95
.871
96
.870
97
.867
98
.868
99
.868
100
.866
101
.864
102
.865
103
.865
104
.864
105
.865
106
.865
107
.865
108
.864
109
.865
110
.863
111
.863
112
.863
113
.863
114
.862
115
.862
116
.862
117
.861
118
.861
119
.862
120
.861
121
.862
122
.861
123
.861
124
.859
125
.858
126
.858
127
.858
128
.857
129
.857
130
.857
131
.857
132
.857
133
.855
134
.856
135
.856
136
.856
137
.856
138
.855
139
.855
140
.855
141
.854
142
.855
143
.854
144
.854
145
.852
146
.850
147
.850
148
.848
149
.847
150
.847
151
.845
152
.845
153
.843
154
.843
155
.843
156
.840
157
.840
158
.838
159
.838
160
.837
161
.836
162
.835
163
.835
164
.835
165
.835
166
.833
167
.833
168
.832
169
.832
170
.830
171
.831
172
.831
173
.830
174
.830
175
.828
176
.826
177
.825
178
.825
179
.822
180
.820
181
.819
182
.818
183
.818
184
.817
185
.817
186
.814
187
.813
188
.814
189
.813
190
.813
191
.812
192
.811
193
.812
194
.809
195
.810
196
.808
197
.806
198
.806
199
.803
200
.800
201
.799
202
.797
203
.797
204
.796
205
.792
206
.791
207
.791
208
.790
209
.788
210
.788
211
.787
212
.787
213
.785
214
.786
215
.777
216
.777
217
.773
218
.773
219
.771
220
.769
221
.766
222
.765
223
.763
224
.761
225
.760
226
.759
227
.759
228
.758
229
.757
230
.757
231
.756
232
.754
233
.754
234
.754
235
.749
236
.747
237
.745
238
.744
239
.743
240
.742
241
.741
242
.739
243
.740
244
.739
245
.738
246
.736
247
.732
248
.730
249
.727
250
.727
251
.727
252
.727
253
.726
254
.725
255
.722
256
.721
257
.717
258
.716
259
.715
260
.714
261
.709
262
.709
263
.708
264
.707
265
.703
266
.703
267
.701
268
.702
269
.700
270
.700
271
.700
272
.696
273
.695
274
.695
275
.694
276
.693
277
.693
278
.691
279
.691
280
.690
281
.689
282
.687
283
.687
284
.686
285
.685
286
.684
287
.682
288
.681
289
.680
290
.680
291
.676
292
.675
293
.674
294
.670
295
.668
296
.667
297
.667
298
.665
299
.662
300
.660
301
.658
302
.658
303
.657
304
.656
305
.655
306
.654
307
.649
308
.648
309
.646
310
.645
311
.644
312
.645
313
.641
314
.627
315
.624
316
.625
317
.623
318
.621
319
.621
320
.619
321
.616
322
.615
323
.615
324
.613
325
.610
326
.605
327
.604
328
.600
329
.597
330
.597
331
.596
332
.591
333
.589
334
.590
335
.581
336
.577
337
.570
338
.565
339
.560
340
.557
341
.554
342
.550
343
.550
344
.535
345
.519
346
.516
347
.515
348
.493
349
.490
350
.462
351
.459
352
.447
353
.385
354
.375
355
.375
356
.355
357
.271
358
.271
359
.215
360
.170
361
.169
362
.081
363
.028
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: circular_variance