Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-circular_variance")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.984
2
.982
3
.975
4
.973
5
.973
6
.971
7
.969
8
.966
9
.961
10
.962
11
.958
12
.958
13
.955
14
.951
15
.949
16
.946
17
.947
18
.946
19
.944
20
.942
21
.942
22
.942
23
.941
24
.938
25
.936
26
.935
27
.935
28
.934
29
.930
30
.929
31
.926
32
.925
33
.924
34
.923
35
.923
36
.922
37
.921
38
.921
39
.919
40
.918
41
.917
42
.916
43
.915
44
.916
45
.912
46
.912
47
.912
48
.911
49
.909
50
.909
51
.908
52
.906
53
.907
54
.905
55
.903
56
.902
57
.900
58
.899
59
.897
60
.898
61
.895
62
.896
63
.896
64
.893
65
.893
66
.892
67
.892
68
.892
69
.890
70
.890
71
.889
72
.889
73
.887
74
.884
75
.885
76
.884
77
.882
78
.882
79
.882
80
.879
81
.878
82
.878
83
.877
84
.876
85
.875
86
.875
87
.873
88
.874
89
.873
90
.872
91
.872
92
.871
93
.871
94
.871
95
.870
96
.867
97
.868
98
.868
99
.866
100
.864
101
.865
102
.865
103
.864
104
.865
105
.865
106
.865
107
.864
108
.865
109
.863
110
.863
111
.863
112
.863
113
.862
114
.862
115
.862
116
.861
117
.861
118
.862
119
.861
120
.862
121
.861
122
.861
123
.860
124
.859
125
.858
126
.858
127
.858
128
.857
129
.857
130
.857
131
.857
132
.857
133
.856
134
.856
135
.856
136
.855
137
.855
138
.855
139
.855
140
.854
141
.852
142
.850
143
.850
144
.848
145
.847
146
.847
147
.845
148
.845
149
.843
150
.843
151
.843
152
.840
153
.840
154
.838
155
.838
156
.837
157
.836
158
.835
159
.835
160
.835
161
.835
162
.833
163
.833
164
.832
165
.832
166
.830
167
.831
168
.831
169
.830
170
.830
171
.828
172
.826
173
.825
174
.825
175
.822
176
.820
177
.819
178
.818
179
.818
180
.817
181
.817
182
.814
183
.813
184
.814
185
.813
186
.813
187
.812
188
.811
189
.812
190
.809
191
.810
192
.808
193
.806
194
.806
195
.803
196
.800
197
.799
198
.797
199
.797
200
.796
201
.792
202
.791
203
.791
204
.790
205
.788
206
.788
207
.787
208
.787
209
.785
210
.786
211
.777
212
.777
213
.773
214
.773
215
.771
216
.769
217
.766
218
.765
219
.763
220
.761
221
.760
222
.759
223
.759
224
.758
225
.757
226
.757
227
.756
228
.754
229
.754
230
.754
231
.749
232
.747
233
.745
234
.744
235
.743
236
.742
237
.741
238
.739
239
.740
240
.739
241
.738
242
.736
243
.732
244
.730
245
.727
246
.727
247
.727
248
.727
249
.726
250
.725
251
.722
252
.721
253
.717
254
.716
255
.715
256
.714
257
.709
258
.709
259
.708
260
.707
261
.703
262
.703
263
.701
264
.702
265
.700
266
.700
267
.700
268
.696
269
.695
270
.695
271
.694
272
.693
273
.693
274
.691
275
.691
276
.690
277
.689
278
.687
279
.687
280
.686
281
.685
282
.684
283
.682
284
.681
285
.680
286
.680
287
.676
288
.675
289
.674
290
.670
291
.668
292
.667
293
.667
294
.665
295
.662
296
.660
297
.658
298
.658
299
.657
300
.656
301
.655
302
.654
303
.649
304
.648
305
.646
306
.645
307
.644
308
.645
309
.641
310
.627
311
.624
312
.625
313
.623
314
.621
315
.621
316
.619
317
.616
318
.615
319
.615
320
.613
321
.610
322
.605
323
.604
324
.600
325
.597
326
.597
327
.596
328
.591
329
.589
330
.590
331
.581
332
.577
333
.570
334
.565
335
.560
336
.557
337
.554
338
.550
339
.550
340
.535
341
.519
342
.516
343
.515
344
.493
345
.490
346
.462
347
.459
348
.447
349
.385
350
.375
351
.375
352
.355
353
.271
354
.271
355
.215
356
.170
357
.169
358
.081
359
.028
360
X
361
X
362
X
363
X
364
X
365
X
366
X
367
X
368
X
369
X
370
X
371
X
372
X
373
X
374
X
375
X
376
X
377
X
378
X
379
X
380
X
381
X
382
X
383
X
384
X
385
X
386
X

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: circular_variance