Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-circular_variance")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.984
2
.982
3
.975
4
.973
5
.973
6
.971
7
.969
8
.966
9
.961
10
.962
11
.958
12
.958
13
.955
14
.951
15
.949
16
.946
17
.947
18
.946
19
.944
20
.942
21
.942
22
.942
23
.941
24
.938
25
.936
26
.935
27
.935
28
.934
29
.930
30
.929
31
.926
32
.925
33
.924
34
.923
35
.923
36
.922
37
.921
38
.921
39
.919
40
.919
41
.918
42
.917
43
.916
44
.915
45
.916
46
.912
47
.912
48
.912
49
.911
50
.909
51
.909
52
.908
53
.906
54
.907
55
.905
56
.903
57
.902
58
.900
59
.897
60
.899
61
.898
62
.895
63
.896
64
.896
65
.893
66
.893
67
.892
68
.892
69
.892
70
.890
71
.890
72
.889
73
.889
74
.887
75
.884
76
.885
77
.884
78
.882
79
.882
80
.882
81
.879
82
.878
83
.878
84
.877
85
.876
86
.875
87
.875
88
.873
89
.874
90
.873
91
.872
92
.872
93
.871
94
.871
95
.871
96
.870
97
.867
98
.868
99
.868
100
.866
101
.864
102
.865
103
.865
104
.864
105
.865
106
.865
107
.865
108
.864
109
.865
110
.863
111
.863
112
.863
113
.863
114
.862
115
.862
116
.862
117
.861
118
.861
119
.862
120
.861
121
.862
122
.861
123
.861
124
.859
125
.858
126
.858
127
.858
128
.857
129
.857
130
.857
131
.857
132
.857
133
.855
134
.856
135
.856
136
.856
137
.856
138
.855
139
.855
140
.855
141
.854
142
.855
143
.854
144
.854
145
.852
146
.850
147
.850
148
.848
149
.847
150
.847
151
.845
152
.845
153
.843
154
.843
155
.843
156
.840
157
.840
158
.838
159
.838
160
.837
161
.836
162
.835
163
.835
164
.835
165
.835
166
.833
167
.833
168
.832
169
.832
170
.830
171
.831
172
.831
173
.830
174
.830
175
.828
176
.826
177
.825
178
.825
179
.822
180
.820
181
.819
182
.818
183
.818
184
.817
185
.817
186
.814
187
.813
188
.814
189
.813
190
.813
191
.812
192
.811
193
.812
194
.809
195
.810
196
.808
197
.806
198
.806
199
.803
200
.802
201
.800
202
.800
203
.799
204
.798
205
.797
206
.797
207
.796
208
.793
209
.792
210
.792
211
.791
212
.791
213
.791
214
.791
215
.790
216
.789
217
.788
218
.788
219
.788
220
.787
221
.787
222
.785
223
.786
224
.785
225
.777
226
.777
227
.773
228
.773
229
.771
230
.769
231
.766
232
.765
233
.763
234
.761
235
.760
236
.759
237
.759
238
.758
239
.757
240
.757
241
.756
242
.754
243
.754
244
.754
245
.749
246
.747
247
.745
248
.744
249
.743
250
.742
251
.741
252
.739
253
.740
254
.739
255
.738
256
.736
257
.732
258
.730
259
.727
260
.727
261
.727
262
.727
263
.726
264
.725
265
.722
266
.721
267
.717
268
.716
269
.715
270
.714
271
.709
272
.709
273
.708
274
.707
275
.703
276
.703
277
.701
278
.702
279
.700
280
.700
281
.700
282
.696
283
.695
284
.695
285
.694
286
.693
287
.693
288
.691
289
.691
290
.690
291
.689
292
.687
293
.687
294
.686
295
.685
296
.684
297
.682
298
.681
299
.680
300
.680
301
.676
302
.675
303
.674
304
.670
305
.668
306
.667
307
.667
308
.665
309
.662
310
.660
311
.658
312
.658
313
.657
314
.656
315
.655
316
.654
317
.649
318
.648
319
.646
320
.645
321
.644
322
.645
323
.641
324
.627
325
.624
326
.625
327
.623
328
.621
329
.621
330
.619
331
.616
332
.615
333
.615
334
.613
335
.610
336
.605
337
.604
338
.600
339
.597
340
.597
341
.596
342
.591
343
.589
344
.590
345
.581
346
.577
347
.570
348
.565
349
.560
350
.557
351
.554
352
.550
353
.550
354
.535
355
.519
356
.516
357
.515
358
.493
359
.490
360
.462
361
.459
362
.447
363
.385
364
.375
365
.375
366
.355
367
.271
368
.271
369
.215
370
.170
371
.169
372
.081
373
.028
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: circular_variance