Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-circular_variance")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.984
2
.982
3
.975
4
.973
5
.973
6
.971
7
.969
8
.966
9
.961
10
.962
11
.958
12
.958
13
.958
14
.957
15
.955
16
.951
17
.949
18
.949
19
.946
20
.947
21
.946
22
.944
23
.942
24
.942
25
.942
26
.941
27
.938
28
.936
29
.935
30
.935
31
.934
32
.930
33
.929
34
.926
35
.925
36
.924
37
.923
38
.923
39
.922
40
.921
41
.921
42
.919
43
.919
44
.918
45
.917
46
.916
47
.915
48
.916
49
.912
50
.912
51
.912
52
.911
53
.909
54
.909
55
.909
56
.908
57
.906
58
.907
59
.905
60
.903
61
.902
62
.900
63
.897
64
.899
65
.898
66
.895
67
.896
68
.895
69
.896
70
.893
71
.893
72
.892
73
.892
74
.892
75
.890
76
.890
77
.889
78
.889
79
.889
80
.887
81
.884
82
.885
83
.884
84
.883
85
.882
86
.882
87
.882
88
.879
89
.879
90
.878
91
.878
92
.877
93
.876
94
.875
95
.875
96
.873
97
.874
98
.873
99
.872
100
.872
101
.871
102
.871
103
.871
104
.870
105
.867
106
.868
107
.868
108
.866
109
.864
110
.865
111
.865
112
.864
113
.865
114
.865
115
.865
116
.864
117
.865
118
.863
119
.863
120
.863
121
.863
122
.862
123
.862
124
.862
125
.861
126
.861
127
.862
128
.861
129
.862
130
.861
131
.861
132
.859
133
.858
134
.858
135
.858
136
.857
137
.857
138
.857
139
.857
140
.857
141
.855
142
.856
143
.856
144
.856
145
.856
146
.855
147
.855
148
.855
149
.854
150
.855
151
.854
152
.854
153
.852
154
.850
155
.850
156
.848
157
.847
158
.847
159
.845
160
.845
161
.843
162
.843
163
.843
164
.840
165
.840
166
.838
167
.838
168
.837
169
.836
170
.835
171
.835
172
.835
173
.835
174
.833
175
.833
176
.832
177
.832
178
.830
179
.831
180
.831
181
.830
182
.830
183
.828
184
.826
185
.825
186
.825
187
.822
188
.820
189
.819
190
.818
191
.818
192
.817
193
.817
194
.814
195
.813
196
.814
197
.813
198
.813
199
.812
200
.811
201
.812
202
.809
203
.810
204
.808
205
.806
206
.806
207
.803
208
.802
209
.800
210
.800
211
.799
212
.798
213
.797
214
.797
215
.796
216
.793
217
.792
218
.792
219
.791
220
.791
221
.791
222
.791
223
.790
224
.789
225
.788
226
.788
227
.788
228
.787
229
.787
230
.785
231
.786
232
.786
233
.785
234
.777
235
.777
236
.773
237
.773
238
.771
239
.769
240
.766
241
.765
242
.763
243
.761
244
.760
245
.759
246
.759
247
.758
248
.757
249
.757
250
.756
251
.754
252
.754
253
.754
254
.749
255
.747
256
.745
257
.744
258
.743
259
.742
260
.741
261
.739
262
.740
263
.739
264
.738
265
.736
266
.732
267
.730
268
.727
269
.727
270
.727
271
.727
272
.726
273
.725
274
.722
275
.721
276
.717
277
.716
278
.715
279
.714
280
.709
281
.709
282
.708
283
.707
284
.703
285
.703
286
.701
287
.702
288
.700
289
.700
290
.700
291
.696
292
.695
293
.695
294
.694
295
.693
296
.693
297
.691
298
.691
299
.690
300
.689
301
.687
302
.687
303
.686
304
.685
305
.684
306
.682
307
.681
308
.680
309
.680
310
.676
311
.675
312
.674
313
.670
314
.668
315
.667
316
.667
317
.665
318
.662
319
.660
320
.658
321
.658
322
.657
323
.656
324
.655
325
.654
326
.649
327
.648
328
.646
329
.645
330
.644
331
.645
332
.641
333
.627
334
.624
335
.625
336
.623
337
.621
338
.621
339
.619
340
.616
341
.615
342
.615
343
.613
344
.610
345
.605
346
.604
347
.600
348
.597
349
.597
350
.596
351
.591
352
.589
353
.590
354
.581
355
.577
356
.570
357
.565
358
.560
359
.557
360
.554
361
.550
362
.550
363
.535
364
.519
365
.516
366
.515
367
.493
368
.490
369
.462
370
.459
371
.447
372
.385
373
.375
374
.375
375
.355
376
.271
377
.271
378
.215
379
.170
380
.169
381
.081
382
.028
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: circular_variance