Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_bandwidth")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.984
2
.984
3
.982
4
.981
5
.969
6
.965
7
.965
8
.961
9
.956
10
.954
11
.955
12
.952
13
.952
14
.950
15
.949
16
.950
17
.945
18
.944
19
.941
20
.941
21
.939
22
.939
23
.938
24
.937
25
.936
26
.934
27
.933
28
.932
29
.933
30
.932
31
.932
32
.933
33
.931
34
.930
35
.930
36
.931
37
.928
38
.930
39
.928
40
.928
41
.927
42
.927
43
.926
44
.927
45
.927
46
.925
47
.924
48
.923
49
.923
50
.922
51
.922
52
.921
53
.920
54
.920
55
.920
56
.919
57
.917
58
.917
59
.917
60
.916
61
.916
62
.915
63
.915
64
.915
65
.916
66
.915
67
.915
68
.914
69
.913
70
.913
71
.913
72
.911
73
.911
74
.911
75
.911
76
.910
77
.910
78
.910
79
.909
80
.909
81
.907
82
.907
83
.906
84
.907
85
.906
86
.905
87
.903
88
.905
89
.904
90
.904
91
.904
92
.904
93
.903
94
.902
95
.903
96
.901
97
.900
98
.900
99
.899
100
.899
101
.897
102
.896
103
.896
104
.895
105
.893
106
.892
107
.892
108
.891
109
.890
110
.889
111
.889
112
.888
113
.888
114
.888
115
.888
116
.886
117
.887
118
.885
119
.885
120
.883
121
.884
122
.882
123
.882
124
.881
125
.883
126
.881
127
.879
128
.879
129
.878
130
.879
131
.879
132
.878
133
.877
134
.877
135
.877
136
.877
137
.876
138
.876
139
.876
140
.876
141
.876
142
.876
143
.876
144
.875
145
.876
146
.875
147
.875
148
.875
149
.875
150
.874
151
.874
152
.874
153
.874
154
.874
155
.874
156
.872
157
.873
158
.871
159
.871
160
.871
161
.870
162
.870
163
.869
164
.867
165
.868
166
.867
167
.867
168
.866
169
.866
170
.865
171
.865
172
.864
173
.863
174
.863
175
.861
176
.861
177
.861
178
.859
179
.860
180
.859
181
.858
182
.858
183
.857
184
.857
185
.857
186
.857
187
.856
188
.855
189
.855
190
.854
191
.854
192
.854
193
.853
194
.853
195
.852
196
.853
197
.852
198
.852
199
.851
200
.852
201
.849
202
.849
203
.849
204
.847
205
.848
206
.843
207
.842
208
.842
209
.842
210
.841
211
.840
212
.838
213
.838
214
.838
215
.838
216
.838
217
.837
218
.836
219
.836
220
.836
221
.835
222
.834
223
.834
224
.833
225
.833
226
.832
227
.832
228
.831
229
.831
230
.830
231
.829
232
.830
233
.829
234
.828
235
.826
236
.826
237
.826
238
.823
239
.823
240
.821
241
.822
242
.820
243
.819
244
.819
245
.819
246
.817
247
.816
248
.816
249
.815
250
.814
251
.813
252
.813
253
.813
254
.811
255
.811
256
.811
257
.811
258
.810
259
.810
260
.807
261
.808
262
.807
263
.807
264
.806
265
.804
266
.803
267
.802
268
.801
269
.799
270
.795
271
.794
272
.794
273
.794
274
.794
275
.790
276
.790
277
.790
278
.788
279
.788
280
.787
281
.787
282
.786
283
.785
284
.783
285
.784
286
.783
287
.782
288
.781
289
.779
290
.778
291
.777
292
.777
293
.776
294
.774
295
.774
296
.774
297
.769
298
.764
299
.762
300
.762
301
.761
302
.762
303
.760
304
.759
305
.753
306
.753
307
.751
308
.751
309
.749
310
.746
311
.743
312
.741
313
.740
314
.739
315
.739
316
.739
317
.739
318
.739
319
.734
320
.730
321
.728
322
.728
323
.724
324
.722
325
.719
326
.718
327
.714
328
.710
329
.706
330
.705
331
.702
332
.702
333
.701
334
.700
335
.698
336
.692
337
.691
338
.683
339
.674
340
.671
341
.670
342
.669
343
.660
344
.658
345
.648
346
.647
347
.644
348
.641
349
.612
350
.600
351
.597
352
.581
353
.566
354
.554
355
.548
356
.518
357
.517
358
.511
359
.505
360
.504
361
.494
362
.491
363
.483
364
.447
365
.441
366
.440
367
.432
368
.428
369
.427
370
.393
371
.393
372
.393
373
.389
374
.387
375
.386
376
.297
377
.262
378
.254
379
.229
380
.150
381
.108
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Benchmark bibtex

None

Ceiling

0.97.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_bandwidth