Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_bandwidth")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.984
2
.984
3
.982
4
.981
5
.969
6
.965
7
.965
8
.961
9
.956
10
.954
11
.955
12
.952
13
.952
14
.950
15
.949
16
.950
17
.945
18
.944
19
.941
20
.941
21
.939
22
.939
23
.938
24
.937
25
.936
26
.934
27
.933
28
.932
29
.933
30
.932
31
.932
32
.933
33
.931
34
.930
35
.930
36
.931
37
.928
38
.930
39
.928
40
.928
41
.927
42
.927
43
.926
44
.927
45
.927
46
.925
47
.924
48
.923
49
.923
50
.922
51
.922
52
.921
53
.920
54
.920
55
.920
56
.919
57
.917
58
.917
59
.917
60
.916
61
.916
62
.915
63
.915
64
.915
65
.916
66
.915
67
.915
68
.914
69
.913
70
.913
71
.913
72
.911
73
.911
74
.911
75
.911
76
.910
77
.910
78
.910
79
.909
80
.909
81
.907
82
.907
83
.906
84
.907
85
.906
86
.905
87
.903
88
.905
89
.904
90
.904
91
.904
92
.904
93
.903
94
.902
95
.903
96
.901
97
.900
98
.900
99
.899
100
.899
101
.897
102
.896
103
.896
104
.895
105
.893
106
.892
107
.892
108
.891
109
.890
110
.889
111
.889
112
.888
113
.888
114
.888
115
.888
116
.886
117
.887
118
.885
119
.885
120
.883
121
.884
122
.882
123
.882
124
.881
125
.883
126
.881
127
.879
128
.879
129
.878
130
.879
131
.879
132
.878
133
.877
134
.877
135
.877
136
.877
137
.876
138
.876
139
.876
140
.876
141
.876
142
.876
143
.875
144
.876
145
.875
146
.875
147
.875
148
.875
149
.874
150
.874
151
.874
152
.874
153
.874
154
.874
155
.872
156
.873
157
.871
158
.871
159
.871
160
.870
161
.870
162
.869
163
.867
164
.868
165
.867
166
.867
167
.866
168
.866
169
.865
170
.865
171
.864
172
.863
173
.863
174
.861
175
.861
176
.861
177
.859
178
.860
179
.859
180
.858
181
.858
182
.857
183
.857
184
.857
185
.857
186
.856
187
.855
188
.855
189
.854
190
.854
191
.854
192
.853
193
.853
194
.852
195
.853
196
.852
197
.852
198
.851
199
.852
200
.849
201
.849
202
.849
203
.847
204
.848
205
.843
206
.842
207
.842
208
.842
209
.841
210
.840
211
.838
212
.838
213
.838
214
.838
215
.838
216
.837
217
.836
218
.836
219
.836
220
.835
221
.834
222
.834
223
.833
224
.833
225
.832
226
.832
227
.831
228
.831
229
.830
230
.829
231
.830
232
.829
233
.828
234
.826
235
.826
236
.826
237
.823
238
.823
239
.821
240
.822
241
.820
242
.819
243
.819
244
.819
245
.817
246
.816
247
.816
248
.815
249
.814
250
.813
251
.813
252
.813
253
.811
254
.811
255
.811
256
.811
257
.810
258
.810
259
.807
260
.808
261
.807
262
.807
263
.806
264
.804
265
.803
266
.802
267
.801
268
.799
269
.795
270
.794
271
.794
272
.794
273
.794
274
.790
275
.790
276
.790
277
.788
278
.788
279
.787
280
.787
281
.786
282
.785
283
.783
284
.784
285
.783
286
.782
287
.781
288
.779
289
.778
290
.777
291
.777
292
.776
293
.774
294
.774
295
.774
296
.769
297
.764
298
.762
299
.762
300
.761
301
.762
302
.760
303
.759
304
.753
305
.753
306
.751
307
.749
308
.746
309
.743
310
.741
311
.740
312
.739
313
.739
314
.739
315
.739
316
.739
317
.734
318
.730
319
.728
320
.728
321
.724
322
.722
323
.719
324
.718
325
.714
326
.710
327
.706
328
.705
329
.702
330
.702
331
.701
332
.700
333
.698
334
.692
335
.691
336
.683
337
.674
338
.671
339
.670
340
.669
341
.658
342
.648
343
.647
344
.644
345
.641
346
.612
347
.600
348
.597
349
.581
350
.566
351
.554
352
.548
353
.518
354
.517
355
.511
356
.505
357
.494
358
.491
359
.483
360
.447
361
.441
362
.440
363
.432
364
.428
365
.427
366
.393
367
.393
368
.393
369
.389
370
.387
371
.386
372
.297
373
.262
374
.254
375
.229
376
.150
377
.108
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

Benchmark bibtex

None

Ceiling

0.97.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_bandwidth