Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.000
4
1.0
5
1.000
6
1.0
7
1.000
8
1.000
9
1.0
10
1.0
11
1.000
12
1.0
13
1.000
14
1.000
15
1.000
16
1.000
17
.999
18
.999
19
.999
20
1.000
21
.999
22
.999
23
.999
24
.999
25
.999
26
.999
27
.999
28
.999
29
.999
30
.999
31
.999
32
.999
33
.999
34
.999
35
.999
36
.999
37
.999
38
.998
39
.998
40
.998
41
.999
42
.998
43
.999
44
.998
45
.998
46
.998
47
.998
48
.998
49
.997
50
.997
51
.997
52
.997
53
.997
54
.996
55
.996
56
.996
57
.996
58
.996
59
.996
60
.996
61
.996
62
.996
63
.995
64
.995
65
.996
66
.995
67
.995
68
.995
69
.995
70
.995
71
.995
72
.994
73
.995
74
.994
75
.994
76
.994
77
.993
78
.993
79
.993
80
.993
81
.992
82
.992
83
.992
84
.992
85
.991
86
.992
87
.991
88
.991
89
.991
90
.991
91
.990
92
.990
93
.989
94
.988
95
.988
96
.987
97
.986
98
.986
99
.986
100
.986
101
.986
102
.986
103
.986
104
.986
105
.986
106
.986
107
.986
108
.986
109
.986
110
.986
111
.986
112
.986
113
.986
114
.986
115
.986
116
.986
117
.986
118
.986
119
.986
120
.986
121
.986
122
.986
123
.986
124
.986
125
.986
126
.986
127
.986
128
.986
129
.986
130
.985
131
.984
132
.984
133
.984
134
.984
135
.983
136
.982
137
.982
138
.982
139
.981
140
.981
141
.981
142
.981
143
.980
144
.979
145
.979
146
.979
147
.978
148
.977
149
.975
150
.975
151
.975
152
.975
153
.974
154
.974
155
.972
156
.971
157
.971
158
.970
159
.970
160
.968
161
.966
162
.966
163
.966
164
.965
165
.965
166
.963
167
.964
168
.964
169
.963
170
.962
171
.958
172
.958
173
.956
174
.954
175
.953
176
.952
177
.951
178
.949
179
.948
180
.946
181
.946
182
.945
183
.945
184
.942
185
.941
186
.941
187
.940
188
.939
189
.939
190
.939
191
.939
192
.937
193
.937
194
.936
195
.935
196
.935
197
.933
198
.933
199
.933
200
.931
201
.931
202
.931
203
.929
204
.928
205
.927
206
.927
207
.927
208
.927
209
.926
210
.925
211
.925
212
.925
213
.925
214
.924
215
.923
216
.921
217
.919
218
.919
219
.917
220
.915
221
.914
222
.913
223
.912
224
.911
225
.911
226
.909
227
.909
228
.909
229
.908
230
.907
231
.907
232
.906
233
.905
234
.905
235
.905
236
.901
237
.901
238
.901
239
.901
240
.900
241
.900
242
.900
243
.900
244
.900
245
.900
246
.900
247
.900
248
.898
249
.898
250
.897
251
.897
252
.897
253
.897
254
.897
255
.896
256
.896
257
.896
258
.896
259
.895
260
.895
261
.895
262
.894
263
.893
264
.893
265
.892
266
.891
267
.890
268
.889
269
.889
270
.888
271
.886
272
.885
273
.884
274
.884
275
.883
276
.883
277
.880
278
.880
279
.879
280
.878
281
.877
282
.877
283
.876
284
.876
285
.873
286
.873
287
.871
288
.871
289
.870
290
.868
291
.868
292
.865
293
.862
294
.860
295
.860
296
.857
297
.855
298
.848
299
.846
300
.846
301
.846
302
.845
303
.844
304
.839
305
.839
306
.838
307
.838
308
.838
309
.835
310
.834
311
.834
312
.828
313
.828
314
.828
315
.827
316
.826
317
.826
318
.823
319
.821
320
.820
321
.820
322
.813
323
.813
324
.812
325
.805
326
.800
327
.797
328
.797
329
.797
330
.795
331
.795
332
.795
333
.795
334
.795
335
.793
336
.793
337
.787
338
.786
339
.782
340
.781
341
.780
342
.774
343
.771
344
.765
345
.754
346
.754
347
.748
348
.748
349
.747
350
.742
351
.736
352
.735
353
.734
354
.733
355
.732
356
.718
357
.718
358
.711
359
.694
360
.692
361
.686
362
.684
363
.681
364
.676
365
.674
366
.672
367
.662
368
.648
369
.643
370
.628
371
.607
372
.601
373
.557
374
.513
375
.481
376
.370
377
.322
378
.321
379
.274
380
.138
381
.052
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

Benchmark bibtex

None

Ceiling

0.99.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_selective