Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.000
4
1.0
5
1.000
6
1.0
7
1.000
8
1.000
9
1.0
10
1.0
11
1.000
12
1.0
13
1.000
14
1.000
15
1.000
16
1.000
17
.999
18
.999
19
.999
20
1.000
21
.999
22
.999
23
.999
24
.999
25
.999
26
.999
27
.999
28
.999
29
.999
30
.999
31
.999
32
.999
33
.999
34
.999
35
.999
36
.999
37
.999
38
.998
39
.998
40
.998
41
.999
42
.998
43
.999
44
.998
45
.998
46
.998
47
.998
48
.998
49
.997
50
.997
51
.997
52
.997
53
.997
54
.996
55
.996
56
.996
57
.996
58
.996
59
.996
60
.996
61
.996
62
.996
63
.995
64
.995
65
.996
66
.995
67
.995
68
.995
69
.995
70
.995
71
.995
72
.994
73
.995
74
.994
75
.994
76
.994
77
.993
78
.993
79
.993
80
.993
81
.992
82
.992
83
.992
84
.992
85
.991
86
.992
87
.991
88
.991
89
.991
90
.991
91
.990
92
.990
93
.989
94
.988
95
.988
96
.987
97
.986
98
.986
99
.986
100
.986
101
.986
102
.986
103
.986
104
.986
105
.986
106
.986
107
.986
108
.986
109
.986
110
.986
111
.986
112
.986
113
.986
114
.986
115
.986
116
.986
117
.986
118
.986
119
.986
120
.986
121
.986
122
.986
123
.986
124
.986
125
.986
126
.986
127
.986
128
.986
129
.986
130
.985
131
.984
132
.984
133
.984
134
.984
135
.983
136
.982
137
.982
138
.982
139
.981
140
.981
141
.981
142
.981
143
.980
144
.979
145
.979
146
.979
147
.978
148
.977
149
.975
150
.975
151
.975
152
.975
153
.974
154
.974
155
.972
156
.971
157
.971
158
.970
159
.970
160
.968
161
.966
162
.966
163
.966
164
.965
165
.965
166
.963
167
.964
168
.964
169
.963
170
.962
171
.958
172
.958
173
.956
174
.954
175
.953
176
.952
177
.951
178
.949
179
.948
180
.946
181
.946
182
.945
183
.945
184
.942
185
.941
186
.941
187
.940
188
.939
189
.939
190
.939
191
.939
192
.937
193
.937
194
.936
195
.935
196
.935
197
.933
198
.933
199
.933
200
.931
201
.931
202
.931
203
.929
204
.928
205
.927
206
.927
207
.927
208
.926
209
.925
210
.925
211
.925
212
.925
213
.924
214
.923
215
.921
216
.919
217
.919
218
.917
219
.915
220
.914
221
.913
222
.912
223
.911
224
.911
225
.909
226
.909
227
.909
228
.908
229
.907
230
.907
231
.906
232
.905
233
.905
234
.905
235
.901
236
.901
237
.901
238
.901
239
.900
240
.900
241
.900
242
.900
243
.900
244
.900
245
.900
246
.898
247
.898
248
.897
249
.897
250
.897
251
.897
252
.897
253
.896
254
.896
255
.896
256
.896
257
.895
258
.895
259
.894
260
.893
261
.893
262
.892
263
.891
264
.890
265
.889
266
.889
267
.888
268
.886
269
.885
270
.884
271
.884
272
.883
273
.883
274
.880
275
.880
276
.879
277
.878
278
.877
279
.877
280
.876
281
.876
282
.873
283
.873
284
.871
285
.871
286
.870
287
.868
288
.868
289
.865
290
.862
291
.860
292
.860
293
.857
294
.855
295
.848
296
.846
297
.846
298
.846
299
.845
300
.844
301
.839
302
.839
303
.838
304
.838
305
.838
306
.835
307
.834
308
.834
309
.828
310
.828
311
.828
312
.827
313
.826
314
.826
315
.823
316
.821
317
.820
318
.820
319
.813
320
.813
321
.812
322
.805
323
.800
324
.797
325
.797
326
.797
327
.795
328
.795
329
.795
330
.795
331
.795
332
.793
333
.793
334
.787
335
.786
336
.782
337
.781
338
.780
339
.774
340
.771
341
.765
342
.754
343
.754
344
.748
345
.748
346
.747
347
.742
348
.736
349
.735
350
.734
351
.733
352
.732
353
.718
354
.718
355
.711
356
.694
357
.692
358
.686
359
.684
360
.681
361
.676
362
.672
363
.662
364
.648
365
.643
366
.628
367
.607
368
.601
369
.557
370
.513
371
.481
372
.370
373
.322
374
.321
375
.274
376
.138
377
.052
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

Benchmark bibtex

None

Ceiling

0.99.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_selective