Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.000
4
1.0
5
1.000
6
1.0
7
1.000
8
1.0
9
1.0
10
1.000
11
1.0
12
1.000
13
1.000
14
1.000
15
1.000
16
.999
17
.999
18
1.000
19
.999
20
.999
21
.999
22
.999
23
.999
24
.999
25
.999
26
.999
27
.999
28
.999
29
.999
30
.999
31
.999
32
.999
33
.999
34
.999
35
.999
36
.998
37
.998
38
.998
39
.999
40
.998
41
.999
42
.998
43
.998
44
.998
45
.997
46
.997
47
.997
48
.996
49
.996
50
.996
51
.996
52
.996
53
.996
54
.996
55
.996
56
.996
57
.995
58
.995
59
.996
60
.995
61
.995
62
.995
63
.995
64
.995
65
.995
66
.994
67
.995
68
.994
69
.994
70
.994
71
.993
72
.993
73
.992
74
.992
75
.992
76
.992
77
.991
78
.992
79
.991
80
.991
81
.991
82
.991
83
.990
84
.990
85
.989
86
.988
87
.988
88
.986
89
.986
90
.986
91
.986
92
.986
93
.986
94
.986
95
.986
96
.986
97
.986
98
.986
99
.986
100
.986
101
.986
102
.986
103
.986
104
.986
105
.986
106
.986
107
.986
108
.986
109
.986
110
.986
111
.986
112
.986
113
.986
114
.986
115
.986
116
.986
117
.986
118
.985
119
.984
120
.984
121
.984
122
.984
123
.983
124
.982
125
.982
126
.981
127
.981
128
.981
129
.981
130
.980
131
.979
132
.978
133
.977
134
.975
135
.975
136
.975
137
.975
138
.974
139
.974
140
.971
141
.971
142
.970
143
.970
144
.968
145
.966
146
.966
147
.965
148
.965
149
.963
150
.964
151
.964
152
.963
153
.962
154
.958
155
.958
156
.956
157
.954
158
.953
159
.952
160
.951
161
.949
162
.948
163
.946
164
.946
165
.945
166
.945
167
.942
168
.941
169
.941
170
.940
171
.939
172
.939
173
.939
174
.939
175
.937
176
.937
177
.936
178
.935
179
.935
180
.933
181
.933
182
.933
183
.931
184
.931
185
.931
186
.929
187
.928
188
.927
189
.927
190
.927
191
.925
192
.925
193
.925
194
.925
195
.924
196
.923
197
.921
198
.919
199
.919
200
.917
201
.915
202
.914
203
.913
204
.912
205
.911
206
.911
207
.909
208
.909
209
.908
210
.907
211
.907
212
.906
213
.905
214
.905
215
.905
216
.901
217
.901
218
.901
219
.900
220
.900
221
.900
222
.900
223
.900
224
.900
225
.900
226
.898
227
.898
228
.897
229
.897
230
.897
231
.897
232
.897
233
.896
234
.896
235
.896
236
.896
237
.895
238
.895
239
.894
240
.893
241
.893
242
.892
243
.891
244
.890
245
.889
246
.889
247
.888
248
.886
249
.885
250
.884
251
.884
252
.883
253
.883
254
.880
255
.880
256
.879
257
.878
258
.877
259
.877
260
.876
261
.876
262
.873
263
.873
264
.871
265
.871
266
.870
267
.868
268
.868
269
.865
270
.862
271
.860
272
.860
273
.857
274
.855
275
.848
276
.846
277
.846
278
.846
279
.845
280
.844
281
.839
282
.839
283
.838
284
.838
285
.838
286
.835
287
.834
288
.834
289
.828
290
.828
291
.828
292
.827
293
.826
294
.826
295
.823
296
.821
297
.820
298
.820
299
.813
300
.813
301
.812
302
.805
303
.800
304
.797
305
.797
306
.797
307
.795
308
.795
309
.795
310
.795
311
.795
312
.793
313
.793
314
.787
315
.786
316
.782
317
.781
318
.780
319
.774
320
.771
321
.765
322
.754
323
.754
324
.748
325
.748
326
.747
327
.742
328
.736
329
.735
330
.734
331
.733
332
.718
333
.718
334
.711
335
.694
336
.692
337
.686
338
.681
339
.676
340
.672
341
.662
342
.648
343
.643
344
.628
345
.607
346
.601
347
.557
348
.513
349
.481
350
.370
351
.322
352
.321
353
.274
354
.138
355
.052
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

Benchmark bibtex

None

Ceiling

0.99.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_selective