Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.000
4
1.0
5
1.000
6
1.0
7
1.000
8
1.000
9
1.0
10
1.0
11
1.000
12
1.0
13
1.000
14
1.000
15
1.000
16
1.000
17
.999
18
.999
19
1.000
20
.999
21
.999
22
.999
23
.999
24
.999
25
.999
26
.999
27
.999
28
.999
29
.999
30
.999
31
.999
32
.999
33
.999
34
.999
35
.999
36
.999
37
.998
38
.998
39
.998
40
.999
41
.998
42
.999
43
.998
44
.998
45
.998
46
.998
47
.998
48
.997
49
.997
50
.997
51
.997
52
.996
53
.996
54
.996
55
.996
56
.996
57
.996
58
.996
59
.996
60
.996
61
.995
62
.995
63
.996
64
.995
65
.995
66
.995
67
.995
68
.995
69
.995
70
.994
71
.995
72
.994
73
.994
74
.994
75
.993
76
.993
77
.992
78
.992
79
.992
80
.992
81
.991
82
.992
83
.991
84
.991
85
.991
86
.991
87
.990
88
.990
89
.989
90
.988
91
.988
92
.986
93
.986
94
.986
95
.986
96
.986
97
.986
98
.986
99
.986
100
.986
101
.986
102
.986
103
.986
104
.986
105
.986
106
.986
107
.986
108
.986
109
.986
110
.986
111
.986
112
.986
113
.986
114
.986
115
.986
116
.986
117
.986
118
.986
119
.986
120
.986
121
.986
122
.986
123
.986
124
.985
125
.984
126
.984
127
.984
128
.984
129
.983
130
.982
131
.982
132
.982
133
.981
134
.981
135
.981
136
.981
137
.980
138
.979
139
.979
140
.978
141
.977
142
.975
143
.975
144
.975
145
.975
146
.974
147
.974
148
.971
149
.971
150
.970
151
.970
152
.968
153
.966
154
.966
155
.966
156
.965
157
.965
158
.963
159
.964
160
.964
161
.963
162
.962
163
.958
164
.958
165
.956
166
.954
167
.953
168
.952
169
.951
170
.949
171
.948
172
.946
173
.946
174
.945
175
.945
176
.942
177
.941
178
.941
179
.940
180
.939
181
.939
182
.939
183
.939
184
.937
185
.937
186
.936
187
.935
188
.935
189
.933
190
.933
191
.933
192
.931
193
.931
194
.931
195
.929
196
.928
197
.927
198
.927
199
.927
200
.925
201
.925
202
.925
203
.925
204
.924
205
.923
206
.921
207
.919
208
.919
209
.917
210
.915
211
.914
212
.913
213
.912
214
.911
215
.911
216
.909
217
.909
218
.908
219
.907
220
.907
221
.906
222
.905
223
.905
224
.905
225
.901
226
.901
227
.901
228
.900
229
.900
230
.900
231
.900
232
.900
233
.900
234
.900
235
.898
236
.898
237
.897
238
.897
239
.897
240
.897
241
.897
242
.896
243
.896
244
.896
245
.896
246
.895
247
.895
248
.894
249
.893
250
.893
251
.892
252
.891
253
.890
254
.889
255
.889
256
.888
257
.886
258
.885
259
.884
260
.884
261
.883
262
.883
263
.880
264
.880
265
.879
266
.878
267
.877
268
.877
269
.876
270
.876
271
.873
272
.873
273
.871
274
.871
275
.870
276
.868
277
.868
278
.865
279
.862
280
.860
281
.860
282
.857
283
.855
284
.848
285
.846
286
.846
287
.846
288
.845
289
.844
290
.839
291
.839
292
.838
293
.838
294
.838
295
.835
296
.834
297
.834
298
.828
299
.828
300
.828
301
.827
302
.826
303
.826
304
.823
305
.821
306
.820
307
.820
308
.813
309
.813
310
.812
311
.805
312
.800
313
.797
314
.797
315
.797
316
.795
317
.795
318
.795
319
.795
320
.795
321
.793
322
.793
323
.787
324
.786
325
.782
326
.781
327
.780
328
.774
329
.771
330
.765
331
.754
332
.754
333
.748
334
.748
335
.747
336
.742
337
.736
338
.735
339
.734
340
.733
341
.718
342
.718
343
.711
344
.694
345
.692
346
.686
347
.681
348
.676
349
.672
350
.662
351
.648
352
.643
353
.628
354
.607
355
.601
356
.557
357
.513
358
.481
359
.370
360
.322
361
.321
362
.274
363
.138
364
.052
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

Benchmark bibtex

None

Ceiling

0.99.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_selective