Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-or_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.0
3
1.0
4
1.000
5
1.0
6
1.000
7
1.0
8
1.0
9
1.000
10
1.0
11
1.000
12
1.000
13
1.000
14
1.000
15
.999
16
.999
17
1.000
18
.999
19
.999
20
.999
21
.999
22
.999
23
.999
24
.999
25
.999
26
.999
27
.999
28
.999
29
.999
30
.999
31
.999
32
.999
33
.998
34
.998
35
.999
36
.999
37
.998
38
.998
39
.998
40
.998
41
.997
42
.997
43
.997
44
.996
45
.996
46
.996
47
.996
48
.996
49
.996
50
.996
51
.996
52
.996
53
.995
54
.996
55
.995
56
.995
57
.995
58
.995
59
.995
60
.995
61
.994
62
.995
63
.994
64
.994
65
.994
66
.993
67
.993
68
.992
69
.992
70
.991
71
.991
72
.991
73
.990
74
.990
75
.989
76
.988
77
.988
78
.986
79
.986
80
.986
81
.986
82
.986
83
.986
84
.986
85
.986
86
.986
87
.986
88
.986
89
.986
90
.986
91
.986
92
.986
93
.986
94
.986
95
.986
96
.986
97
.986
98
.986
99
.986
100
.986
101
.986
102
.986
103
.986
104
.986
105
.986
106
.986
107
.986
108
.985
109
.984
110
.984
111
.984
112
.984
113
.983
114
.982
115
.982
116
.981
117
.981
118
.981
119
.981
120
.980
121
.979
122
.978
123
.977
124
.975
125
.975
126
.975
127
.975
128
.974
129
.974
130
.971
131
.971
132
.970
133
.970
134
.968
135
.966
136
.966
137
.965
138
.965
139
.963
140
.964
141
.964
142
.963
143
.962
144
.958
145
.958
146
.956
147
.954
148
.953
149
.952
150
.951
151
.949
152
.948
153
.946
154
.946
155
.945
156
.945
157
.942
158
.941
159
.941
160
.940
161
.939
162
.939
163
.939
164
.939
165
.937
166
.937
167
.936
168
.935
169
.935
170
.933
171
.933
172
.933
173
.931
174
.931
175
.931
176
.929
177
.928
178
.927
179
.927
180
.927
181
.925
182
.925
183
.925
184
.925
185
.924
186
.923
187
.921
188
.919
189
.919
190
.917
191
.915
192
.914
193
.913
194
.912
195
.911
196
.911
197
.909
198
.909
199
.908
200
.907
201
.907
202
.906
203
.905
204
.905
205
.905
206
.901
207
.901
208
.901
209
.900
210
.900
211
.900
212
.900
213
.900
214
.900
215
.900
216
.898
217
.898
218
.897
219
.897
220
.897
221
.897
222
.897
223
.896
224
.896
225
.896
226
.896
227
.895
228
.895
229
.894
230
.893
231
.893
232
.892
233
.891
234
.890
235
.889
236
.889
237
.888
238
.886
239
.885
240
.884
241
.884
242
.883
243
.883
244
.880
245
.880
246
.879
247
.878
248
.877
249
.877
250
.876
251
.876
252
.873
253
.873
254
.871
255
.871
256
.870
257
.868
258
.868
259
.865
260
.862
261
.860
262
.860
263
.857
264
.855
265
.848
266
.846
267
.846
268
.846
269
.845
270
.844
271
.839
272
.839
273
.838
274
.838
275
.838
276
.835
277
.834
278
.834
279
.828
280
.828
281
.828
282
.827
283
.826
284
.826
285
.823
286
.821
287
.820
288
.820
289
.813
290
.813
291
.812
292
.805
293
.800
294
.797
295
.797
296
.797
297
.795
298
.795
299
.795
300
.795
301
.795
302
.793
303
.793
304
.787
305
.786
306
.782
307
.781
308
.780
309
.774
310
.771
311
.765
312
.754
313
.754
314
.748
315
.748
316
.747
317
.742
318
.736
319
.735
320
.734
321
.733
322
.718
323
.718
324
.711
325
.694
326
.692
327
.686
328
.681
329
.676
330
.672
331
.662
332
.648
333
.643
334
.628
335
.607
336
.601
337
.557
338
.513
339
.481
340
.370
341
.322
342
.321
343
.274
344
.138
345
.052
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

Benchmark bibtex

None

Ceiling

0.99.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: or_selective