Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-cv_bandwidth_ratio")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.966
2
.963
3
.961
4
.962
5
.961
6
.960
7
.961
8
.961
9
.959
10
.956
11
.955
12
.950
13
.949
14
.947
15
.947
16
.944
17
.943
18
.943
19
.941
20
.941
21
.939
22
.942
23
.940
24
.940
25
.939
26
.939
27
.939
28
.939
29
.937
30
.937
31
.936
32
.935
33
.935
34
.934
35
.933
36
.931
37
.931
38
.931
39
.929
40
.927
41
.926
42
.925
43
.926
44
.926
45
.924
46
.924
47
.923
48
.921
49
.922
50
.921
51
.921
52
.922
53
.921
54
.921
55
.920
56
.920
57
.921
58
.920
59
.919
60
.920
61
.918
62
.919
63
.918
64
.919
65
.917
66
.916
67
.915
68
.914
69
.914
70
.915
71
.914
72
.915
73
.915
74
.914
75
.914
76
.914
77
.915
78
.914
79
.913
80
.913
81
.912
82
.911
83
.911
84
.911
85
.909
86
.908
87
.908
88
.906
89
.905
90
.905
91
.904
92
.902
93
.903
94
.903
95
.902
96
.900
97
.899
98
.899
99
.898
100
.899
101
.897
102
.898
103
.898
104
.898
105
.898
106
.896
107
.897
108
.896
109
.894
110
.894
111
.894
112
.893
113
.893
114
.892
115
.891
116
.889
117
.889
118
.888
119
.888
120
.887
121
.886
122
.886
123
.884
124
.884
125
.884
126
.884
127
.883
128
.882
129
.882
130
.882
131
.881
132
.881
133
.880
134
.880
135
.879
136
.878
137
.878
138
.877
139
.876
140
.876
141
.875
142
.876
143
.876
144
.873
145
.873
146
.872
147
.871
148
.871
149
.872
150
.872
151
.871
152
.871
153
.870
154
.870
155
.869
156
.870
157
.869
158
.869
159
.869
160
.869
161
.869
162
.868
163
.868
164
.868
165
.868
166
.868
167
.868
168
.866
169
.866
170
.863
171
.863
172
.862
173
.861
174
.861
175
.860
176
.859
177
.859
178
.856
179
.854
180
.853
181
.853
182
.853
183
.851
184
.849
185
.849
186
.848
187
.847
188
.847
189
.844
190
.843
191
.843
192
.842
193
.843
194
.839
195
.838
196
.837
197
.837
198
.836
199
.835
200
.834
201
.833
202
.833
203
.833
204
.830
205
.830
206
.829
207
.829
208
.829
209
.827
210
.827
211
.826
212
.826
213
.826
214
.821
215
.821
216
.821
217
.819
218
.819
219
.818
220
.819
221
.817
222
.816
223
.814
224
.813
225
.814
226
.811
227
.810
228
.809
229
.808
230
.806
231
.804
232
.805
233
.805
234
.802
235
.801
236
.800
237
.800
238
.797
239
.797
240
.797
241
.796
242
.794
243
.793
244
.792
245
.790
246
.789
247
.789
248
.787
249
.787
250
.787
251
.786
252
.784
253
.785
254
.781
255
.777
256
.778
257
.778
258
.776
259
.775
260
.773
261
.772
262
.771
263
.770
264
.769
265
.767
266
.766
267
.764
268
.763
269
.761
270
.761
271
.760
272
.757
273
.757
274
.755
275
.746
276
.746
277
.746
278
.746
279
.745
280
.745
281
.746
282
.745
283
.745
284
.745
285
.745
286
.745
287
.742
288
.742
289
.741
290
.738
291
.737
292
.736
293
.734
294
.733
295
.732
296
.731
297
.724
298
.722
299
.720
300
.715
301
.712
302
.712
303
.710
304
.710
305
.707
306
.707
307
.706
308
.707
309
.705
310
.705
311
.705
312
.704
313
.700
314
.696
315
.693
316
.690
317
.688
318
.688
319
.688
320
.687
321
.685
322
.684
323
.684
324
.682
325
.681
326
.680
327
.679
328
.678
329
.677
330
.677
331
.677
332
.677
333
.677
334
.676
335
.672
336
.670
337
.669
338
.667
339
.667
340
.667
341
.665
342
.665
343
.665
344
.664
345
.664
346
.664
347
.663
348
.661
349
.661
350
.661
351
.658
352
.655
353
.652
354
.650
355
.647
356
.646
357
.646
358
.644
359
.644
360
.643
361
.636
362
.635
363
.633
364
.631
365
.632
366
.618
367
.616
368
.597
369
.593
370
.590
371
.561
372
.507
373
.491
374
.333
375
.333
376
.288
377
.288
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

Benchmark bibtex

None

Ceiling

0.97.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: cv_bandwidth_ratio