Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-opr_cv_diff")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.991
2
.988
3
.989
4
.989
5
.987
6
.987
7
.987
8
.984
9
.981
10
.980
11
.978
12
.977
13
.978
14
.976
15
.976
16
.976
17
.973
18
.973
19
.972
20
.972
21
.971
22
.969
23
.968
24
.968
25
.966
26
.965
27
.966
28
.965
29
.964
30
.964
31
.964
32
.963
33
.963
34
.962
35
.962
36
.961
37
.960
38
.959
39
.958
40
.958
41
.957
42
.954
43
.953
44
.951
45
.952
46
.950
47
.949
48
.949
49
.948
50
.948
51
.946
52
.946
53
.945
54
.944
55
.944
56
.943
57
.942
58
.942
59
.941
60
.941
61
.941
62
.941
63
.940
64
.941
65
.941
66
.940
67
.940
68
.940
69
.940
70
.939
71
.939
72
.939
73
.937
74
.936
75
.935
76
.934
77
.935
78
.935
79
.934
80
.934
81
.934
82
.933
83
.933
84
.934
85
.933
86
.933
87
.932
88
.931
89
.930
90
.930
91
.930
92
.929
93
.928
94
.927
95
.927
96
.926
97
.926
98
.926
99
.926
100
.926
101
.924
102
.924
103
.924
104
.924
105
.924
106
.924
107
.923
108
.923
109
.922
110
.922
111
.921
112
.921
113
.920
114
.918
115
.919
116
.919
117
.919
118
.920
119
.918
120
.919
121
.919
122
.919
123
.919
124
.918
125
.919
126
.918
127
.918
128
.918
129
.918
130
.917
131
.916
132
.916
133
.916
134
.915
135
.915
136
.915
137
.915
138
.913
139
.911
140
.911
141
.910
142
.909
143
.909
144
.908
145
.908
146
.908
147
.908
148
.908
149
.908
150
.907
151
.908
152
.907
153
.907
154
.907
155
.905
156
.906
157
.904
158
.902
159
.901
160
.900
161
.900
162
.899
163
.897
164
.898
165
.897
166
.896
167
.896
168
.895
169
.893
170
.894
171
.894
172
.892
173
.892
174
.891
175
.891
176
.891
177
.889
178
.889
179
.888
180
.889
181
.886
182
.885
183
.884
184
.884
185
.883
186
.882
187
.879
188
.880
189
.878
190
.878
191
.878
192
.875
193
.875
194
.874
195
.874
196
.873
197
.870
198
.870
199
.870
200
.870
201
.869
202
.869
203
.867
204
.864
205
.865
206
.865
207
.865
208
.865
209
.863
210
.862
211
.862
212
.861
213
.861
214
.861
215
.860
216
.860
217
.859
218
.859
219
.858
220
.856
221
.856
222
.855
223
.855
224
.855
225
.855
226
.854
227
.852
228
.852
229
.850
230
.850
231
.850
232
.849
233
.848
234
.849
235
.848
236
.845
237
.845
238
.844
239
.842
240
.842
241
.840
242
.840
243
.839
244
.839
245
.836
246
.836
247
.835
248
.835
249
.834
250
.833
251
.833
252
.833
253
.831
254
.831
255
.831
256
.830
257
.830
258
.828
259
.826
260
.826
261
.825
262
.825
263
.822
264
.821
265
.820
266
.821
267
.820
268
.816
269
.816
270
.813
271
.815
272
.814
273
.813
274
.812
275
.812
276
.811
277
.810
278
.810
279
.809
280
.808
281
.809
282
.808
283
.808
284
.808
285
.806
286
.806
287
.805
288
.803
289
.802
290
.802
291
.802
292
.800
293
.801
294
.801
295
.799
296
.797
297
.795
298
.796
299
.794
300
.792
301
.792
302
.791
303
.791
304
.789
305
.789
306
.789
307
.787
308
.785
309
.783
310
.775
311
.775
312
.774
313
.774
314
.773
315
.772
316
.770
317
.769
318
.768
319
.764
320
.762
321
.760
322
.758
323
.757
324
.755
325
.751
326
.751
327
.750
328
.745
329
.746
330
.742
331
.738
332
.736
333
.735
334
.734
335
.730
336
.727
337
.722
338
.721
339
.720
340
.720
341
.719
342
.715
343
.714
344
.713
345
.712
346
.710
347
.708
348
.703
349
.702
350
.700
351
.694
352
.693
353
.683
354
.680
355
.676
356
.668
357
.663
358
.661
359
.635
360
.633
361
.629
362
.604
363
.563
364
.547
365
.546
366
.532
367
.521
368
.492
369
.487
370
.437
371
.419
372
.405
373
.398
374
.367
375
.349
376
.320
377
.265
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

Benchmark bibtex

None

Ceiling

0.97.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: opr_cv_diff