Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-opr_cv_diff")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.991
2
.988
3
.989
4
.989
5
.987
6
.987
7
.987
8
.984
9
.981
10
.980
11
.978
12
.977
13
.978
14
.976
15
.976
16
.976
17
.973
18
.973
19
.972
20
.972
21
.971
22
.969
23
.968
24
.968
25
.966
26
.965
27
.966
28
.965
29
.964
30
.964
31
.963
32
.963
33
.962
34
.962
35
.960
36
.959
37
.958
38
.958
39
.957
40
.954
41
.953
42
.952
43
.950
44
.949
45
.948
46
.948
47
.945
48
.944
49
.944
50
.943
51
.942
52
.942
53
.941
54
.941
55
.941
56
.941
57
.940
58
.941
59
.940
60
.940
61
.940
62
.940
63
.939
64
.939
65
.939
66
.937
67
.936
68
.935
69
.934
70
.935
71
.935
72
.934
73
.934
74
.934
75
.933
76
.933
77
.934
78
.933
79
.933
80
.932
81
.931
82
.930
83
.930
84
.930
85
.929
86
.928
87
.927
88
.927
89
.926
90
.926
91
.926
92
.926
93
.926
94
.924
95
.924
96
.924
97
.924
98
.924
99
.924
100
.923
101
.923
102
.922
103
.922
104
.921
105
.921
106
.920
107
.918
108
.919
109
.919
110
.919
111
.920
112
.918
113
.919
114
.919
115
.919
116
.919
117
.918
118
.919
119
.918
120
.918
121
.918
122
.918
123
.917
124
.916
125
.916
126
.916
127
.915
128
.915
129
.915
130
.915
131
.913
132
.911
133
.911
134
.910
135
.909
136
.909
137
.908
138
.908
139
.908
140
.908
141
.908
142
.907
143
.908
144
.907
145
.907
146
.907
147
.905
148
.906
149
.904
150
.902
151
.901
152
.900
153
.900
154
.897
155
.898
156
.897
157
.896
158
.896
159
.895
160
.893
161
.894
162
.894
163
.892
164
.891
165
.891
166
.891
167
.889
168
.889
169
.888
170
.889
171
.886
172
.884
173
.884
174
.883
175
.882
176
.879
177
.880
178
.878
179
.878
180
.878
181
.875
182
.875
183
.874
184
.874
185
.873
186
.870
187
.870
188
.870
189
.870
190
.869
191
.869
192
.867
193
.864
194
.865
195
.865
196
.865
197
.865
198
.862
199
.862
200
.861
201
.861
202
.861
203
.860
204
.860
205
.859
206
.859
207
.858
208
.856
209
.856
210
.855
211
.855
212
.855
213
.855
214
.854
215
.852
216
.852
217
.850
218
.850
219
.850
220
.849
221
.848
222
.849
223
.848
224
.845
225
.845
226
.844
227
.842
228
.842
229
.840
230
.840
231
.839
232
.839
233
.836
234
.836
235
.835
236
.835
237
.834
238
.833
239
.833
240
.833
241
.831
242
.831
243
.831
244
.830
245
.830
246
.828
247
.826
248
.826
249
.825
250
.825
251
.822
252
.821
253
.820
254
.821
255
.820
256
.816
257
.813
258
.815
259
.814
260
.813
261
.812
262
.812
263
.811
264
.810
265
.810
266
.809
267
.808
268
.809
269
.808
270
.808
271
.808
272
.806
273
.806
274
.805
275
.803
276
.802
277
.802
278
.802
279
.800
280
.801
281
.801
282
.799
283
.797
284
.795
285
.796
286
.794
287
.792
288
.792
289
.791
290
.791
291
.789
292
.789
293
.789
294
.787
295
.785
296
.783
297
.775
298
.775
299
.774
300
.774
301
.773
302
.772
303
.770
304
.769
305
.768
306
.764
307
.762
308
.760
309
.758
310
.757
311
.755
312
.751
313
.751
314
.750
315
.745
316
.746
317
.742
318
.738
319
.736
320
.735
321
.734
322
.730
323
.727
324
.722
325
.721
326
.720
327
.720
328
.719
329
.715
330
.714
331
.713
332
.712
333
.710
334
.708
335
.703
336
.702
337
.700
338
.694
339
.693
340
.683
341
.680
342
.676
343
.668
344
.663
345
.661
346
.635
347
.633
348
.629
349
.604
350
.563
351
.547
352
.546
353
.532
354
.521
355
.492
356
.487
357
.437
358
.419
359
.405
360
.398
361
.367
362
.349
363
.320
364
.265
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

Benchmark bibtex

None

Ceiling

0.97.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: opr_cv_diff