Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_DeValois1982-pref_or")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
.998
3
.997
4
.997
5
.997
6
.996
7
.995
8
.996
9
.995
10
.995
11
.993
12
.992
13
.992
14
.991
15
.991
16
.991
17
.990
18
.991
19
.989
20
.989
21
.988
22
.988
23
.987
24
.989
25
.988
26
.986
27
.987
28
.987
29
.986
30
.987
31
.987
32
.987
33
.986
34
.985
35
.985
36
.985
37
.984
38
.984
39
.984
40
.984
41
.983
42
.982
43
.982
44
.982
45
.983
46
.983
47
.983
48
.982
49
.982
50
.983
51
.981
52
.980
53
.980
54
.978
55
.980
56
.980
57
.980
58
.978
59
.979
60
.978
61
.978
62
.979
63
.979
64
.979
65
.979
66
.979
67
.977
68
.978
69
.978
70
.976
71
.977
72
.977
73
.976
74
.977
75
.974
76
.976
77
.976
78
.975
79
.974
80
.974
81
.975
82
.972
83
.973
84
.974
85
.973
86
.973
87
.972
88
.973
89
.972
90
.973
91
.971
92
.972
93
.971
94
.970
95
.972
96
.970
97
.972
98
.970
99
.970
100
.969
101
.971
102
.970
103
.969
104
.970
105
.969
106
.968
107
.969
108
.967
109
.967
110
.968
111
.968
112
.967
113
.967
114
.967
115
.966
116
.965
117
.966
118
.965
119
.965
120
.966
121
.966
122
.965
123
.964
124
.964
125
.965
126
.963
127
.963
128
.963
129
.964
130
.964
131
.963
132
.963
133
.963
134
.963
135
.963
136
.963
137
.962
138
.963
139
.963
140
.963
141
.962
142
.959
143
.960
144
.960
145
.961
146
.960
147
.960
148
.959
149
.959
150
.960
151
.960
152
.958
153
.959
154
.957
155
.957
156
.956
157
.956
158
.956
159
.954
160
.955
161
.955
162
.954
163
.954
164
.955
165
.954
166
.954
167
.953
168
.954
169
.952
170
.951
171
.951
172
.950
173
.950
174
.951
175
.950
176
.949
177
.948
178
.947
179
.950
180
.948
181
.949
182
.947
183
.948
184
.947
185
.946
186
.947
187
.945
188
.945
189
.943
190
.943
191
.943
192
.941
193
.941
194
.940
195
.939
196
.940
197
.940
198
.938
199
.938
200
.939
201
.938
202
.938
203
.936
204
.935
205
.935
206
.934
207
.934
208
.933
209
.933
210
.933
211
.932
212
.932
213
.931
214
.931
215
.931
216
.931
217
.930
218
.931
219
.930
220
.931
221
.931
222
.931
223
.930
224
.931
225
.931
226
.930
227
.929
228
.930
229
.930
230
.929
231
.928
232
.928
233
.928
234
.927
235
.927
236
.926
237
.927
238
.925
239
.925
240
.924
241
.923
242
.923
243
.923
244
.922
245
.921
246
.921
247
.922
248
.921
249
.921
250
.918
251
.918
252
.916
253
.917
254
.916
255
.913
256
.913
257
.910
258
.911
259
.911
260
.911
261
.910
262
.908
263
.907
264
.907
265
.905
266
.905
267
.904
268
.901
269
.901
270
.900
271
.900
272
.899
273
.899
274
.897
275
.896
276
.895
277
.894
278
.893
279
.893
280
.894
281
.892
282
.891
283
.890
284
.891
285
.889
286
.886
287
.885
288
.885
289
.884
290
.883
291
.882
292
.882
293
.880
294
.879
295
.877
296
.876
297
.874
298
.872
299
.868
300
.867
301
.868
302
.867
303
.868
304
.859
305
.857
306
.852
307
.850
308
.849
309
.848
310
.839
311
.833
312
.832
313
.831
314
.831
315
.832
316
.828
317
.822
318
.821
319
.815
320
.815
321
.813
322
.812
323
.812
324
.809
325
.808
326
.804
327
.803
328
.803
329
.801
330
.800
331
.793
332
.786
333
.786
334
.786
335
.784
336
.780
337
.778
338
.774
339
.771
340
.769
341
.768
342
.752
343
.745
344
.735
345
.731
346
.724
347
.721
348
.720
349
.720
350
.720
351
.719
352
.719
353
.716
354
.713
355
.697
356
.697
357
.695
358
.677
359
.674
360
.674
361
.649
362
.355
363
.354
364
.064
365
.000
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_DeValois1982

Metric: pref_or