Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_DeValois1982-pref_or")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
.998
3
.997
4
.997
5
.997
6
.996
7
.995
8
.996
9
.995
10
.995
11
.993
12
.992
13
.993
14
.992
15
.991
16
.991
17
.991
18
.990
19
.991
20
.989
21
.989
22
.988
23
.988
24
.987
25
.989
26
.988
27
.986
28
.987
29
.987
30
.986
31
.987
32
.987
33
.987
34
.986
35
.985
36
.985
37
.985
38
.984
39
.984
40
.984
41
.984
42
.983
43
.983
44
.982
45
.982
46
.982
47
.983
48
.983
49
.983
50
.982
51
.982
52
.983
53
.981
54
.980
55
.980
56
.978
57
.979
58
.980
59
.980
60
.980
61
.978
62
.979
63
.978
64
.978
65
.979
66
.979
67
.979
68
.979
69
.979
70
.977
71
.978
72
.978
73
.976
74
.977
75
.977
76
.977
77
.976
78
.977
79
.974
80
.976
81
.976
82
.975
83
.974
84
.974
85
.975
86
.972
87
.973
88
.974
89
.973
90
.973
91
.972
92
.973
93
.972
94
.973
95
.971
96
.972
97
.971
98
.972
99
.970
100
.972
101
.970
102
.972
103
.970
104
.970
105
.969
106
.971
107
.970
108
.969
109
.970
110
.969
111
.968
112
.969
113
.967
114
.967
115
.968
116
.968
117
.967
118
.967
119
.967
120
.966
121
.965
122
.966
123
.965
124
.965
125
.966
126
.966
127
.965
128
.964
129
.964
130
.965
131
.963
132
.963
133
.963
134
.964
135
.964
136
.963
137
.963
138
.963
139
.963
140
.963
141
.963
142
.962
143
.963
144
.963
145
.963
146
.962
147
.959
148
.960
149
.960
150
.961
151
.960
152
.960
153
.959
154
.959
155
.960
156
.960
157
.958
158
.959
159
.957
160
.957
161
.956
162
.956
163
.956
164
.954
165
.955
166
.955
167
.954
168
.954
169
.955
170
.954
171
.954
172
.953
173
.954
174
.952
175
.951
176
.951
177
.950
178
.950
179
.951
180
.950
181
.949
182
.948
183
.947
184
.950
185
.948
186
.949
187
.947
188
.948
189
.947
190
.946
191
.947
192
.945
193
.945
194
.943
195
.943
196
.943
197
.941
198
.941
199
.940
200
.939
201
.940
202
.940
203
.938
204
.938
205
.939
206
.938
207
.938
208
.936
209
.935
210
.935
211
.934
212
.934
213
.934
214
.933
215
.933
216
.933
217
.932
218
.932
219
.931
220
.931
221
.932
222
.931
223
.931
224
.930
225
.931
226
.930
227
.931
228
.931
229
.931
230
.930
231
.931
232
.931
233
.930
234
.929
235
.930
236
.930
237
.929
238
.928
239
.928
240
.928
241
.927
242
.927
243
.926
244
.927
245
.925
246
.925
247
.924
248
.923
249
.923
250
.923
251
.922
252
.921
253
.921
254
.922
255
.921
256
.921
257
.918
258
.918
259
.916
260
.917
261
.915
262
.916
263
.913
264
.913
265
.910
266
.911
267
.911
268
.911
269
.910
270
.908
271
.907
272
.907
273
.905
274
.905
275
.904
276
.901
277
.901
278
.900
279
.900
280
.899
281
.899
282
.897
283
.896
284
.895
285
.894
286
.893
287
.893
288
.894
289
.892
290
.892
291
.891
292
.890
293
.891
294
.889
295
.886
296
.885
297
.885
298
.884
299
.883
300
.882
301
.882
302
.880
303
.879
304
.877
305
.876
306
.874
307
.872
308
.868
309
.867
310
.868
311
.867
312
.868
313
.859
314
.857
315
.852
316
.850
317
.849
318
.848
319
.839
320
.833
321
.832
322
.831
323
.831
324
.832
325
.828
326
.822
327
.821
328
.815
329
.815
330
.813
331
.812
332
.812
333
.809
334
.808
335
.804
336
.803
337
.803
338
.801
339
.800
340
.796
341
.793
342
.786
343
.786
344
.786
345
.784
346
.780
347
.778
348
.774
349
.771
350
.769
351
.768
352
.752
353
.745
354
.735
355
.731
356
.724
357
.721
358
.720
359
.720
360
.720
361
.719
362
.719
363
.716
364
.713
365
.697
366
.697
367
.695
368
.686
369
.677
370
.674
371
.674
372
.649
373
.635
374
.391
375
.355
376
.354
377
.064
378
.000
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_DeValois1982

Metric: pref_or