Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Schiller1976-sf_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.000
3
1.0
4
1.000
5
1.0
6
1.0
7
1.000
8
.999
9
.999
10
.999
11
.999
12
.999
13
.998
14
.999
15
.996
16
.999
17
.996
18
.995
19
.996
20
.996
21
.996
22
.998
23
.997
24
.997
25
.995
26
.993
27
.994
28
.992
29
.994
30
.993
31
.993
32
.991
33
.992
34
.991
35
.990
36
.991
37
.990
38
.990
39
.989
40
.989
41
.990
42
.987
43
.989
44
.988
45
.987
46
.985
47
.984
48
.985
49
.987
50
.984
51
.984
52
.983
53
.984
54
.985
55
.981
56
.980
57
.979
58
.978
59
.975
60
.976
61
.972
62
.972
63
.969
64
.970
65
.969
66
.968
67
.969
68
.967
69
.966
70
.965
71
.967
72
.966
73
.964
74
.964
75
.963
76
.960
77
.958
78
.959
79
.955
80
.954
81
.951
82
.954
83
.951
84
.950
85
.947
86
.947
87
.945
88
.945
89
.944
90
.944
91
.944
92
.938
93
.939
94
.936
95
.937
96
.936
97
.934
98
.929
99
.928
100
.927
101
.928
102
.926
103
.924
104
.925
105
.924
106
.925
107
.922
108
.921
109
.921
110
.919
111
.919
112
.918
113
.917
114
.916
115
.916
116
.914
117
.915
118
.912
119
.912
120
.907
121
.907
122
.905
123
.904
124
.902
125
.901
126
.900
127
.898
128
.898
129
.896
130
.894
131
.893
132
.893
133
.891
134
.890
135
.888
136
.883
137
.883
138
.882
139
.879
140
.881
141
.879
142
.876
143
.878
144
.877
145
.876
146
.873
147
.870
148
.870
149
.867
150
.866
151
.863
152
.865
153
.865
154
.862
155
.863
156
.861
157
.861
158
.861
159
.858
160
.858
161
.858
162
.857
163
.857
164
.857
165
.856
166
.852
167
.852
168
.845
169
.845
170
.844
171
.841
172
.841
173
.839
174
.840
175
.839
176
.840
177
.840
178
.841
179
.840
180
.840
181
.840
182
.839
183
.841
184
.838
185
.840
186
.840
187
.840
188
.839
189
.840
190
.839
191
.839
192
.840
193
.838
194
.838
195
.839
196
.839
197
.840
198
.839
199
.840
200
.839
201
.841
202
.840
203
.840
204
.840
205
.838
206
.839
207
.839
208
.839
209
.840
210
.841
211
.839
212
.840
213
.839
214
.840
215
.838
216
.840
217
.839
218
.840
219
.839
220
.838
221
.837
222
.835
223
.836
224
.831
225
.827
226
.824
227
.825
228
.825
229
.821
230
.820
231
.816
232
.814
233
.814
234
.813
235
.805
236
.804
237
.804
238
.802
239
.800
240
.800
241
.799
242
.799
243
.800
244
.796
245
.791
246
.782
247
.782
248
.773
249
.774
250
.773
251
.767
252
.768
253
.769
254
.767
255
.763
256
.759
257
.761
258
.756
259
.754
260
.749
261
.748
262
.743
263
.740
264
.735
265
.733
266
.732
267
.731
268
.728
269
.726
270
.721
271
.722
272
.720
273
.720
274
.720
275
.718
276
.710
277
.708
278
.694
279
.694
280
.694
281
.691
282
.692
283
.688
284
.688
285
.687
286
.685
287
.683
288
.679
289
.679
290
.672
291
.671
292
.664
293
.661
294
.660
295
.653
296
.647
297
.643
298
.641
299
.640
300
.639
301
.638
302
.637
303
.636
304
.636
305
.623
306
.623
307
.620
308
.618
309
.617
310
.618
311
.613
312
.608
313
.605
314
.603
315
.600
316
.599
317
.584
318
.585
319
.583
320
.580
321
.579
322
.575
323
.575
324
.571
325
.557
326
.557
327
.550
328
.549
329
.543
330
.543
331
.541
332
.540
333
.535
334
.534
335
.532
336
.527
337
.520
338
.513
339
.498
340
.467
341
.465
342
.465
343
.462
344
.456
345
.457
346
.443
347
.437
348
.414
349
.413
350
.409
351
.404
352
.395
353
.346
354
.161
355
.063
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

Benchmark bibtex

@article{Schiller1976,
            author = {Schiller, P. H. and Finlay, B. L. and Volman, S. F.},
            doi = {10.1152/jn.1976.39.6.1352},
            issn = {0022-3077},
            journal = {Journal of neurophysiology},
            number = {6},
            pages = {1334--1351},
            pmid = {825624},
            title = {{Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial Frequency}},
            url = {http://www.ncbi.nlm.nih.gov/pubmed/825624},
            volume = {39},
            year = {1976}
            }
            

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Schiller1976

Metric: sf_selective