Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Schiller1976-sf_selective")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
1.0
2
1.000
3
1.0
4
1.000
5
1.0
6
1.0
7
1.000
8
.999
9
.999
10
.999
11
.999
12
.999
13
.998
14
.999
15
.996
16
.999
17
.996
18
.995
19
.996
20
.996
21
.996
22
.998
23
.997
24
.997
25
.995
26
.993
27
.994
28
.992
29
.994
30
.993
31
.993
32
.991
33
.992
34
.991
35
.990
36
.991
37
.990
38
.990
39
.989
40
.989
41
.990
42
.987
43
.989
44
.988
45
.987
46
.985
47
.984
48
.985
49
.987
50
.984
51
.984
52
.983
53
.984
54
.985
55
.981
56
.980
57
.979
58
.978
59
.975
60
.976
61
.972
62
.972
63
.969
64
.970
65
.969
66
.968
67
.969
68
.969
69
.967
70
.966
71
.965
72
.967
73
.966
74
.964
75
.964
76
.963
77
.960
78
.958
79
.959
80
.955
81
.954
82
.951
83
.954
84
.951
85
.950
86
.947
87
.947
88
.945
89
.945
90
.944
91
.944
92
.944
93
.938
94
.939
95
.936
96
.937
97
.936
98
.934
99
.934
100
.930
101
.929
102
.928
103
.927
104
.928
105
.926
106
.924
107
.925
108
.924
109
.925
110
.922
111
.922
112
.921
113
.921
114
.919
115
.919
116
.918
117
.917
118
.916
119
.916
120
.914
121
.915
122
.912
123
.912
124
.907
125
.907
126
.905
127
.904
128
.902
129
.901
130
.900
131
.898
132
.898
133
.896
134
.894
135
.893
136
.893
137
.891
138
.890
139
.888
140
.883
141
.883
142
.882
143
.879
144
.881
145
.879
146
.876
147
.878
148
.877
149
.876
150
.873
151
.870
152
.870
153
.870
154
.867
155
.867
156
.866
157
.863
158
.865
159
.865
160
.862
161
.863
162
.861
163
.861
164
.861
165
.858
166
.858
167
.858
168
.857
169
.857
170
.857
171
.856
172
.852
173
.852
174
.845
175
.845
176
.844
177
.841
178
.841
179
.839
180
.840
181
.839
182
.840
183
.840
184
.841
185
.840
186
.840
187
.840
188
.839
189
.841
190
.838
191
.840
192
.840
193
.840
194
.839
195
.840
196
.839
197
.839
198
.840
199
.838
200
.838
201
.839
202
.839
203
.840
204
.839
205
.840
206
.839
207
.841
208
.840
209
.840
210
.840
211
.838
212
.839
213
.839
214
.839
215
.840
216
.841
217
.839
218
.839
219
.838
220
.840
221
.839
222
.839
223
.840
224
.838
225
.840
226
.839
227
.840
228
.839
229
.838
230
.837
231
.835
232
.836
233
.831
234
.827
235
.824
236
.825
237
.825
238
.821
239
.820
240
.816
241
.814
242
.814
243
.813
244
.805
245
.804
246
.804
247
.802
248
.800
249
.800
250
.799
251
.799
252
.800
253
.796
254
.791
255
.782
256
.782
257
.773
258
.774
259
.773
260
.767
261
.768
262
.769
263
.767
264
.763
265
.759
266
.761
267
.756
268
.754
269
.749
270
.748
271
.743
272
.740
273
.735
274
.733
275
.732
276
.731
277
.728
278
.726
279
.721
280
.722
281
.720
282
.720
283
.720
284
.718
285
.710
286
.708
287
.694
288
.694
289
.694
290
.691
291
.692
292
.688
293
.688
294
.687
295
.685
296
.683
297
.679
298
.679
299
.672
300
.671
301
.664
302
.661
303
.660
304
.653
305
.647
306
.643
307
.641
308
.640
309
.639
310
.638
311
.637
312
.636
313
.636
314
.623
315
.623
316
.620
317
.618
318
.617
319
.618
320
.613
321
.608
322
.605
323
.603
324
.600
325
.599
326
.584
327
.585
328
.583
329
.580
330
.579
331
.575
332
.575
333
.571
334
.557
335
.557
336
.550
337
.549
338
.543
339
.543
340
.541
341
.540
342
.535
343
.534
344
.532
345
.527
346
.520
347
.513
348
.498
349
.467
350
.465
351
.465
352
.462
353
.456
354
.457
355
.443
356
.437
357
.414
358
.413
359
.409
360
.404
361
.395
362
.346
363
.161
364
.063
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

Benchmark bibtex

@article{Schiller1976,
            author = {Schiller, P. H. and Finlay, B. L. and Volman, S. F.},
            doi = {10.1152/jn.1976.39.6.1352},
            issn = {0022-3077},
            journal = {Journal of neurophysiology},
            number = {6},
            pages = {1334--1351},
            pmid = {825624},
            title = {{Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial Frequency}},
            url = {http://www.ncbi.nlm.nih.gov/pubmed/825624},
            volume = {39},
            year = {1976}
            }
            

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Schiller1976

Metric: sf_selective