Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Schiller1976-sf_bandwidth")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.985
2
.978
3
.977
4
.975
5
.970
6
.969
7
.967
8
.965
9
.966
10
.967
11
.966
12
.965
13
.964
14
.966
15
.959
16
.957
17
.956
18
.953
19
.948
20
.945
21
.946
22
.945
23
.942
24
.941
25
.938
26
.939
27
.938
28
.938
29
.938
30
.936
31
.938
32
.939
33
.939
34
.938
35
.934
36
.933
37
.934
38
.934
39
.932
40
.933
41
.934
42
.932
43
.930
44
.931
45
.931
46
.931
47
.928
48
.929
49
.928
50
.931
51
.928
52
.926
53
.927
54
.928
55
.925
56
.923
57
.925
58
.926
59
.924
60
.926
61
.921
62
.924
63
.924
64
.923
65
.922
66
.922
67
.922
68
.920
69
.920
70
.922
71
.921
72
.920
73
.919
74
.920
75
.919
76
.921
77
.917
78
.918
79
.918
80
.916
81
.916
82
.918
83
.916
84
.916
85
.915
86
.915
87
.915
88
.914
89
.914
90
.914
91
.912
92
.911
93
.909
94
.907
95
.907
96
.906
97
.903
98
.905
99
.905
100
.900
101
.902
102
.900
103
.899
104
.902
105
.901
106
.901
107
.900
108
.900
109
.899
110
.898
111
.899
112
.898
113
.897
114
.898
115
.894
116
.896
117
.896
118
.895
119
.895
120
.895
121
.894
122
.894
123
.890
124
.890
125
.888
126
.887
127
.890
128
.887
129
.887
130
.885
131
.886
132
.885
133
.882
134
.883
135
.882
136
.882
137
.880
138
.881
139
.881
140
.877
141
.877
142
.876
143
.876
144
.874
145
.874
146
.874
147
.875
148
.873
149
.870
150
.871
151
.870
152
.868
153
.868
154
.868
155
.867
156
.864
157
.864
158
.863
159
.861
160
.859
161
.859
162
.858
163
.856
164
.857
165
.855
166
.854
167
.855
168
.855
169
.855
170
.853
171
.854
172
.852
173
.855
174
.851
175
.851
176
.852
177
.849
178
.847
179
.846
180
.846
181
.847
182
.847
183
.845
184
.845
185
.845
186
.842
187
.842
188
.840
189
.841
190
.839
191
.840
192
.840
193
.838
194
.836
195
.836
196
.836
197
.834
198
.835
199
.834
200
.833
201
.834
202
.830
203
.831
204
.830
205
.828
206
.828
207
.828
208
.828
209
.827
210
.825
211
.824
212
.822
213
.820
214
.818
215
.814
216
.813
217
.814
218
.814
219
.813
220
.815
221
.810
222
.809
223
.810
224
.809
225
.805
226
.804
227
.803
228
.803
229
.795
230
.794
231
.793
232
.795
233
.794
234
.793
235
.792
236
.790
237
.787
238
.789
239
.787
240
.785
241
.785
242
.784
243
.783
244
.783
245
.782
246
.782
247
.780
248
.780
249
.779
250
.778
251
.776
252
.777
253
.773
254
.773
255
.773
256
.767
257
.764
258
.766
259
.765
260
.763
261
.762
262
.755
263
.749
264
.749
265
.747
266
.742
267
.743
268
.742
269
.738
270
.739
271
.735
272
.736
273
.728
274
.729
275
.727
276
.724
277
.724
278
.723
279
.724
280
.723
281
.722
282
.718
283
.717
284
.718
285
.716
286
.714
287
.714
288
.712
289
.712
290
.708
291
.704
292
.694
293
.690
294
.685
295
.680
296
.674
297
.674
298
.674
299
.670
300
.666
301
.667
302
.665
303
.664
304
.664
305
.663
306
.662
307
.660
308
.661
309
.661
310
.655
311
.653
312
.650
313
.649
314
.646
315
.644
316
.643
317
.640
318
.632
319
.626
320
.617
321
.615
322
.609
323
.607
324
.604
325
.601
326
.596
327
.596
328
.595
329
.590
330
.586
331
.585
332
.584
333
.572
334
.570
335
.567
336
.557
337
.552
338
.550
339
.546
340
.532
341
.523
342
.520
343
.501
344
.495
345
.491
346
.488
347
.481
348
.477
349
.471
350
.456
351
.454
352
.442
353
.428
354
.399
355
.397
356
.338
357
.331
358
.293
359
.226
360
.103
361
.000
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

Benchmark bibtex

@article{Schiller1976,
            author = {Schiller, P. H. and Finlay, B. L. and Volman, S. F.},
            doi = {10.1152/jn.1976.39.6.1352},
            issn = {0022-3077},
            journal = {Journal of neurophysiology},
            number = {6},
            pages = {1334--1351},
            pmid = {825624},
            title = {{Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial Frequency}},
            url = {http://www.ncbi.nlm.nih.gov/pubmed/825624},
            volume = {39},
            year = {1976}
            }
            

Ceiling

0.93.

Note that scores are relative to this ceiling.

Data: Marques2020_Schiller1976

Metric: sf_bandwidth