Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-max_dc")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.998
2
.997
3
.996
4
.995
5
.993
6
.993
7
.992
8
.992
9
.993
10
.992
11
.992
12
.990
13
.990
14
.990
15
.990
16
.990
17
.989
18
.989
19
.989
20
.989
21
.989
22
.988
23
.987
24
.987
25
.988
26
.988
27
.988
28
.987
29
.987
30
.987
31
.987
32
.986
33
.986
34
.986
35
.987
36
.986
37
.987
38
.986
39
.986
40
.986
41
.985
42
.985
43
.985
44
.985
45
.984
46
.983
47
.984
48
.983
49
.982
50
.984
51
.982
52
.983
53
.982
54
.982
55
.981
56
.980
57
.980
58
.981
59
.980
60
.980
61
.979
62
.979
63
.979
64
.979
65
.979
66
.978
67
.978
68
.978
69
.977
70
.977
71
.976
72
.976
73
.977
74
.976
75
.976
76
.976
77
.976
78
.976
79
.976
80
.976
81
.975
82
.974
83
.975
84
.974
85
.975
86
.974
87
.974
88
.975
89
.974
90
.973
91
.974
92
.974
93
.974
94
.973
95
.973
96
.973
97
.972
98
.973
99
.972
100
.973
101
.972
102
.973
103
.972
104
.971
105
.971
106
.972
107
.971
108
.971
109
.970
110
.970
111
.971
112
.969
113
.968
114
.968
115
.969
116
.968
117
.969
118
.968
119
.969
120
.969
121
.968
122
.969
123
.969
124
.968
125
.968
126
.968
127
.967
128
.967
129
.968
130
.967
131
.968
132
.967
133
.967
134
.967
135
.966
136
.965
137
.965
138
.964
139
.963
140
.963
141
.963
142
.963
143
.964
144
.962
145
.962
146
.962
147
.961
148
.961
149
.960
150
.960
151
.960
152
.960
153
.960
154
.959
155
.957
156
.958
157
.957
158
.955
159
.954
160
.954
161
.954
162
.952
163
.953
164
.953
165
.952
166
.952
167
.952
168
.952
169
.951
170
.951
171
.951
172
.950
173
.950
174
.950
175
.949
176
.948
177
.947
178
.948
179
.947
180
.947
181
.948
182
.947
183
.947
184
.946
185
.946
186
.946
187
.944
188
.944
189
.943
190
.943
191
.943
192
.943
193
.944
194
.942
195
.943
196
.943
197
.942
198
.942
199
.942
200
.941
201
.940
202
.940
203
.940
204
.939
205
.939
206
.938
207
.939
208
.938
209
.938
210
.937
211
.936
212
.937
213
.937
214
.936
215
.936
216
.935
217
.936
218
.935
219
.935
220
.935
221
.935
222
.935
223
.935
224
.935
225
.934
226
.933
227
.933
228
.933
229
.933
230
.933
231
.933
232
.933
233
.933
234
.932
235
.933
236
.932
237
.932
238
.931
239
.931
240
.931
241
.931
242
.931
243
.931
244
.930
245
.930
246
.929
247
.929
248
.929
249
.929
250
.928
251
.927
252
.927
253
.926
254
.926
255
.925
256
.924
257
.924
258
.924
259
.924
260
.924
261
.924
262
.923
263
.923
264
.923
265
.922
266
.922
267
.921
268
.922
269
.921
270
.920
271
.921
272
.919
273
.919
274
.917
275
.917
276
.918
277
.918
278
.915
279
.916
280
.915
281
.914
282
.914
283
.914
284
.913
285
.914
286
.911
287
.911
288
.911
289
.910
290
.909
291
.907
292
.901
293
.897
294
.894
295
.894
296
.893
297
.893
298
.893
299
.893
300
.892
301
.891
302
.890
303
.889
304
.883
305
.882
306
.882
307
.882
308
.881
309
.877
310
.877
311
.876
312
.875
313
.872
314
.872
315
.867
316
.868
317
.867
318
.867
319
.867
320
.866
321
.864
322
.863
323
.860
324
.859
325
.854
326
.848
327
.847
328
.845
329
.843
330
.838
331
.837
332
.824
333
.819
334
.817
335
.811
336
.810
337
.801
338
.796
339
.795
340
.794
341
.783
342
.780
343
.781
344
.775
345
.730
346
.689
347
.689
348
.690
349
.686
350
.654
351
.343
352
.172
353
.116
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

Benchmark bibtex

None

Ceiling

0.97.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: max_dc