Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-max_dc")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.998
2
.997
3
.996
4
.995
5
.993
6
.993
7
.992
8
.992
9
.993
10
.992
11
.992
12
.990
13
.990
14
.990
15
.990
16
.990
17
.989
18
.989
19
.989
20
.989
21
.989
22
.988
23
.987
24
.987
25
.988
26
.988
27
.988
28
.987
29
.987
30
.987
31
.987
32
.986
33
.986
34
.986
35
.987
36
.986
37
.987
38
.986
39
.986
40
.986
41
.985
42
.985
43
.985
44
.985
45
.984
46
.983
47
.984
48
.983
49
.982
50
.984
51
.982
52
.982
53
.983
54
.982
55
.982
56
.981
57
.981
58
.980
59
.980
60
.981
61
.980
62
.980
63
.979
64
.979
65
.979
66
.979
67
.979
68
.978
69
.978
70
.978
71
.977
72
.977
73
.976
74
.976
75
.977
76
.976
77
.976
78
.976
79
.976
80
.976
81
.976
82
.976
83
.975
84
.974
85
.975
86
.975
87
.974
88
.975
89
.974
90
.974
91
.975
92
.974
93
.973
94
.974
95
.974
96
.974
97
.973
98
.973
99
.973
100
.972
101
.973
102
.972
103
.973
104
.972
105
.973
106
.972
107
.971
108
.971
109
.972
110
.971
111
.971
112
.970
113
.970
114
.971
115
.969
116
.968
117
.968
118
.969
119
.968
120
.969
121
.968
122
.969
123
.969
124
.968
125
.969
126
.969
127
.968
128
.968
129
.968
130
.967
131
.967
132
.968
133
.967
134
.968
135
.967
136
.967
137
.967
138
.966
139
.965
140
.965
141
.964
142
.963
143
.963
144
.963
145
.963
146
.964
147
.962
148
.962
149
.962
150
.961
151
.961
152
.960
153
.960
154
.960
155
.960
156
.960
157
.959
158
.958
159
.957
160
.958
161
.957
162
.956
163
.955
164
.954
165
.954
166
.954
167
.952
168
.953
169
.953
170
.952
171
.952
172
.952
173
.952
174
.951
175
.951
176
.951
177
.950
178
.950
179
.950
180
.949
181
.948
182
.948
183
.947
184
.948
185
.947
186
.947
187
.948
188
.947
189
.947
190
.946
191
.946
192
.946
193
.944
194
.944
195
.944
196
.943
197
.943
198
.943
199
.943
200
.944
201
.942
202
.943
203
.943
204
.942
205
.942
206
.942
207
.942
208
.941
209
.940
210
.940
211
.940
212
.939
213
.938
214
.939
215
.938
216
.939
217
.938
218
.938
219
.937
220
.936
221
.937
222
.937
223
.936
224
.936
225
.935
226
.936
227
.935
228
.935
229
.935
230
.935
231
.935
232
.935
233
.935
234
.934
235
.934
236
.933
237
.933
238
.933
239
.933
240
.933
241
.933
242
.933
243
.933
244
.933
245
.932
246
.933
247
.932
248
.932
249
.931
250
.931
251
.931
252
.931
253
.931
254
.931
255
.930
256
.930
257
.929
258
.929
259
.929
260
.929
261
.928
262
.927
263
.927
264
.926
265
.926
266
.925
267
.924
268
.924
269
.924
270
.924
271
.924
272
.924
273
.923
274
.923
275
.923
276
.923
277
.922
278
.922
279
.921
280
.922
281
.921
282
.920
283
.921
284
.919
285
.919
286
.919
287
.917
288
.917
289
.917
290
.918
291
.916
292
.918
293
.915
294
.916
295
.915
296
.914
297
.914
298
.914
299
.913
300
.914
301
.911
302
.911
303
.911
304
.910
305
.909
306
.907
307
.901
308
.897
309
.897
310
.894
311
.894
312
.893
313
.893
314
.893
315
.893
316
.892
317
.891
318
.891
319
.890
320
.889
321
.883
322
.882
323
.882
324
.882
325
.882
326
.881
327
.877
328
.877
329
.877
330
.876
331
.875
332
.872
333
.872
334
.867
335
.868
336
.867
337
.867
338
.867
339
.866
340
.864
341
.863
342
.860
343
.859
344
.854
345
.848
346
.847
347
.845
348
.843
349
.838
350
.837
351
.827
352
.824
353
.819
354
.817
355
.811
356
.810
357
.801
358
.796
359
.795
360
.794
361
.790
362
.783
363
.780
364
.781
365
.775
366
.756
367
.730
368
.689
369
.689
370
.690
371
.686
372
.654
373
.343
374
.172
375
.116
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

Benchmark bibtex

None

Ceiling

0.97.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: max_dc