Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-modulation_ratio")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.906
2
.900
3
.886
4
.884
5
.872
6
.864
7
.855
8
.818
9
.809
10
.808
11
.798
12
.798
13
.795
14
.793
15
.789
16
.789
17
.783
18
.783
19
.781
20
.774
21
.758
22
.752
23
.749
24
.747
25
.726
26
.719
27
.710
28
.697
29
.695
30
.693
31
.690
32
.688
33
.686
34
.677
35
.676
36
.671
37
.671
38
.670
39
.660
40
.660
41
.659
42
.656
43
.656
44
.651
45
.650
46
.646
47
.646
48
.644
49
.643
50
.640
51
.638
52
.633
53
.627
54
.626
55
.624
56
.622
57
.617
58
.617
59
.615
60
.611
61
.610
62
.607
63
.607
64
.604
65
.601
66
.602
67
.601
68
.598
69
.598
70
.598
71
.597
72
.597
73
.596
74
.588
75
.588
76
.588
77
.587
78
.587
79
.587
80
.586
81
.586
82
.585
83
.581
84
.579
85
.579
86
.579
87
.578
88
.578
89
.577
90
.576
91
.576
92
.575
93
.573
94
.573
95
.571
96
.570
97
.570
98
.570
99
.570
100
.568
101
.567
102
.567
103
.564
104
.565
105
.564
106
.563
107
.561
108
.560
109
.559
110
.559
111
.559
112
.556
113
.553
114
.552
115
.550
116
.548
117
.548
118
.548
119
.547
120
.545
121
.545
122
.544
123
.544
124
.542
125
.542
126
.541
127
.539
128
.538
129
.536
130
.536
131
.536
132
.535
133
.533
134
.532
135
.531
136
.530
137
.530
138
.529
139
.528
140
.528
141
.526
142
.527
143
.524
144
.524
145
.524
146
.524
147
.522
148
.519
149
.519
150
.517
151
.517
152
.516
153
.516
154
.514
155
.514
156
.512
157
.511
158
.512
159
.511
160
.509
161
.509
162
.508
163
.504
164
.503
165
.503
166
.501
167
.502
168
.501
169
.501
170
.499
171
.499
172
.498
173
.496
174
.493
175
.493
176
.493
177
.492
178
.491
179
.491
180
.490
181
.490
182
.487
183
.486
184
.485
185
.484
186
.484
187
.482
188
.481
189
.480
190
.480
191
.479
192
.479
193
.478
194
.477
195
.476
196
.475
197
.472
198
.470
199
.469
200
.469
201
.468
202
.469
203
.468
204
.467
205
.465
206
.462
207
.460
208
.458
209
.457
210
.457
211
.457
212
.453
213
.453
214
.452
215
.451
216
.450
217
.448
218
.445
219
.444
220
.443
221
.441
222
.441
223
.440
224
.440
225
.440
226
.439
227
.439
228
.436
229
.436
230
.434
231
.433
232
.432
233
.429
234
.429
235
.426
236
.421
237
.421
238
.420
239
.420
240
.418
241
.413
242
.412
243
.410
244
.411
245
.410
246
.410
247
.409
248
.408
249
.408
250
.407
251
.407
252
.405
253
.404
254
.403
255
.403
256
.403
257
.402
258
.402
259
.397
260
.388
261
.387
262
.387
263
.387
264
.387
265
.387
266
.387
267
.387
268
.387
269
.386
270
.385
271
.383
272
.382
273
.378
274
.378
275
.378
276
.376
277
.374
278
.371
279
.368
280
.366
281
.365
282
.363
283
.359
284
.358
285
.351
286
.348
287
.347
288
.346
289
.341
290
.340
291
.339
292
.338
293
.338
294
.336
295
.335
296
.334
297
.334
298
.333
299
.332
300
.329
301
.329
302
.329
303
.328
304
.328
305
.328
306
.327
307
.326
308
.321
309
.318
310
.318
311
.316
312
.315
313
.313
314
.313
315
.312
316
.311
317
.309
318
.308
319
.308
320
.307
321
.303
322
.301
323
.299
324
.298
325
.297
326
.297
327
.297
328
.297
329
.295
330
.295
331
.293
332
.293
333
.291
334
.290
335
.290
336
.289
337
.288
338
.288
339
.281
340
.281
341
.278
342
.276
343
.273
344
.272
345
.272
346
.271
347
.271
348
.271
349
.271
350
.263
351
.253
352
.252
353
.248
354
.199
355
.198
356
.198
357
.198
358
.199
359
.198
360
.198
361
.198
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: modulation_ratio