Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-modulation_ratio")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.906
2
.900
3
.886
4
.884
5
.872
6
.864
7
.855
8
.818
9
.809
10
.808
11
.798
12
.798
13
.795
14
.793
15
.789
16
.789
17
.783
18
.783
19
.781
20
.774
21
.758
22
.752
23
.749
24
.747
25
.726
26
.719
27
.710
28
.697
29
.695
30
.693
31
.690
32
.688
33
.686
34
.677
35
.676
36
.671
37
.671
38
.670
39
.660
40
.660
41
.659
42
.656
43
.656
44
.651
45
.650
46
.646
47
.646
48
.644
49
.640
50
.638
51
.633
52
.627
53
.626
54
.624
55
.622
56
.617
57
.617
58
.615
59
.611
60
.610
61
.607
62
.607
63
.604
64
.601
65
.602
66
.601
67
.598
68
.598
69
.598
70
.597
71
.597
72
.596
73
.588
74
.588
75
.587
76
.587
77
.585
78
.581
79
.579
80
.579
81
.579
82
.578
83
.578
84
.577
85
.576
86
.576
87
.575
88
.573
89
.573
90
.571
91
.570
92
.570
93
.570
94
.570
95
.568
96
.567
97
.567
98
.564
99
.565
100
.564
101
.563
102
.561
103
.560
104
.559
105
.559
106
.559
107
.556
108
.553
109
.552
110
.550
111
.548
112
.548
113
.548
114
.547
115
.545
116
.545
117
.544
118
.542
119
.542
120
.541
121
.539
122
.538
123
.536
124
.536
125
.536
126
.535
127
.533
128
.532
129
.531
130
.530
131
.530
132
.529
133
.528
134
.528
135
.526
136
.527
137
.524
138
.524
139
.524
140
.524
141
.522
142
.519
143
.519
144
.517
145
.517
146
.516
147
.516
148
.514
149
.514
150
.512
151
.511
152
.512
153
.511
154
.509
155
.509
156
.508
157
.504
158
.503
159
.503
160
.501
161
.502
162
.501
163
.501
164
.499
165
.499
166
.498
167
.496
168
.493
169
.493
170
.493
171
.492
172
.491
173
.491
174
.490
175
.490
176
.487
177
.486
178
.485
179
.484
180
.484
181
.482
182
.481
183
.480
184
.480
185
.479
186
.479
187
.478
188
.477
189
.476
190
.475
191
.472
192
.470
193
.469
194
.469
195
.468
196
.469
197
.468
198
.467
199
.465
200
.462
201
.460
202
.458
203
.457
204
.457
205
.457
206
.453
207
.453
208
.452
209
.451
210
.450
211
.448
212
.445
213
.444
214
.443
215
.441
216
.441
217
.440
218
.440
219
.440
220
.439
221
.439
222
.436
223
.436
224
.434
225
.432
226
.429
227
.429
228
.426
229
.421
230
.421
231
.420
232
.420
233
.418
234
.413
235
.412
236
.410
237
.411
238
.410
239
.410
240
.408
241
.407
242
.407
243
.405
244
.404
245
.403
246
.403
247
.403
248
.402
249
.402
250
.397
251
.388
252
.387
253
.387
254
.387
255
.387
256
.387
257
.387
258
.387
259
.387
260
.386
261
.383
262
.382
263
.378
264
.378
265
.378
266
.376
267
.374
268
.371
269
.368
270
.366
271
.365
272
.363
273
.359
274
.358
275
.351
276
.348
277
.347
278
.346
279
.341
280
.340
281
.339
282
.338
283
.338
284
.336
285
.335
286
.334
287
.326
288
.321
289
.318
290
.318
291
.318
292
.316
293
.315
294
.313
295
.313
296
.312
297
.311
298
.308
299
.308
300
.307
301
.303
302
.301
303
.299
304
.298
305
.297
306
.297
307
.297
308
.297
309
.295
310
.295
311
.293
312
.293
313
.291
314
.290
315
.289
316
.288
317
.288
318
.281
319
.281
320
.276
321
.273
322
.272
323
.272
324
.271
325
.271
326
.271
327
.271
328
.263
329
.253
330
.252
331
.198
332
.198
333
.199
334
.198
335
.198
336
.198
337
.198
338
.199
339
X
340
X
341
X
342
X
343
X
344
X
345
X
346
X
347
X
348
X
349
X
350
X
351
X
352
X
353
X
354
X
355
X
356
X
357
X
358
X
359
X
360
X
361
X
362
X
363
X
364
X

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: modulation_ratio