Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-modulation_ratio")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.906
2
.900
3
.886
4
.884
5
.872
6
.864
7
.855
8
.834
9
.818
10
.814
11
.809
12
.808
13
.798
14
.798
15
.795
16
.793
17
.793
18
.789
19
.789
20
.783
21
.783
22
.781
23
.774
24
.758
25
.752
26
.749
27
.747
28
.726
29
.719
30
.710
31
.697
32
.695
33
.693
34
.690
35
.688
36
.687
37
.686
38
.677
39
.676
40
.671
41
.671
42
.670
43
.660
44
.660
45
.659
46
.656
47
.656
48
.651
49
.650
50
.646
51
.646
52
.644
53
.643
54
.640
55
.638
56
.633
57
.627
58
.626
59
.624
60
.622
61
.617
62
.617
63
.615
64
.611
65
.610
66
.607
67
.607
68
.604
69
.601
70
.602
71
.601
72
.598
73
.598
74
.598
75
.597
76
.597
77
.596
78
.588
79
.588
80
.588
81
.587
82
.587
83
.587
84
.586
85
.586
86
.585
87
.581
88
.579
89
.579
90
.579
91
.578
92
.578
93
.577
94
.576
95
.576
96
.575
97
.573
98
.573
99
.571
100
.570
101
.570
102
.570
103
.570
104
.568
105
.567
106
.567
107
.564
108
.565
109
.564
110
.563
111
.561
112
.560
113
.559
114
.559
115
.559
116
.556
117
.553
118
.552
119
.550
120
.550
121
.548
122
.548
123
.548
124
.547
125
.545
126
.545
127
.544
128
.544
129
.542
130
.542
131
.541
132
.539
133
.538
134
.536
135
.536
136
.536
137
.535
138
.533
139
.532
140
.531
141
.530
142
.530
143
.529
144
.528
145
.528
146
.526
147
.527
148
.524
149
.524
150
.524
151
.524
152
.522
153
.519
154
.519
155
.517
156
.517
157
.516
158
.516
159
.514
160
.514
161
.512
162
.511
163
.512
164
.511
165
.509
166
.509
167
.508
168
.504
169
.503
170
.503
171
.501
172
.502
173
.501
174
.501
175
.499
176
.499
177
.498
178
.496
179
.493
180
.493
181
.493
182
.492
183
.491
184
.491
185
.490
186
.490
187
.487
188
.486
189
.485
190
.484
191
.484
192
.482
193
.481
194
.480
195
.480
196
.479
197
.479
198
.478
199
.477
200
.477
201
.476
202
.475
203
.472
204
.470
205
.469
206
.469
207
.468
208
.469
209
.468
210
.467
211
.465
212
.462
213
.460
214
.458
215
.457
216
.457
217
.457
218
.453
219
.453
220
.452
221
.451
222
.450
223
.449
224
.448
225
.445
226
.444
227
.443
228
.441
229
.441
230
.440
231
.440
232
.440
233
.439
234
.439
235
.436
236
.436
237
.434
238
.433
239
.432
240
.429
241
.429
242
.426
243
.421
244
.421
245
.420
246
.420
247
.418
248
.413
249
.412
250
.410
251
.411
252
.410
253
.410
254
.409
255
.408
256
.408
257
.407
258
.407
259
.405
260
.404
261
.403
262
.403
263
.403
264
.402
265
.402
266
.397
267
.394
268
.388
269
.387
270
.387
271
.387
272
.387
273
.387
274
.387
275
.387
276
.387
277
.387
278
.387
279
.386
280
.385
281
.383
282
.382
283
.378
284
.378
285
.378
286
.376
287
.374
288
.371
289
.369
290
.368
291
.366
292
.365
293
.363
294
.362
295
.359
296
.358
297
.351
298
.348
299
.347
300
.346
301
.341
302
.340
303
.340
304
.339
305
.338
306
.338
307
.336
308
.335
309
.334
310
.334
311
.333
312
.332
313
.329
314
.329
315
.329
316
.328
317
.328
318
.328
319
.327
320
.326
321
.321
322
.318
323
.318
324
.316
325
.315
326
.313
327
.313
328
.312
329
.311
330
.309
331
.308
332
.308
333
.307
334
.303
335
.302
336
.301
337
.299
338
.298
339
.297
340
.297
341
.297
342
.297
343
.295
344
.295
345
.293
346
.293
347
.291
348
.290
349
.290
350
.289
351
.288
352
.288
353
.281
354
.281
355
.280
356
.278
357
.276
358
.273
359
.272
360
.272
361
.271
362
.271
363
.271
364
.271
365
.263
366
.253
367
.252
368
.248
369
.245
370
.199
371
.198
372
.198
373
.198
374
.198
375
.199
376
.198
377
.198
378
.198
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: modulation_ratio