Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Marques2020_Ringach2002-modulation_ratio")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.906
2
.900
3
.886
4
.884
5
.872
6
.864
7
.855
8
.818
9
.809
10
.808
11
.798
12
.798
13
.795
14
.793
15
.789
16
.789
17
.783
18
.783
19
.781
20
.774
21
.758
22
.752
23
.749
24
.747
25
.726
26
.719
27
.710
28
.697
29
.695
30
.693
31
.690
32
.688
33
.687
34
.686
35
.677
36
.676
37
.671
38
.671
39
.670
40
.660
41
.660
42
.659
43
.656
44
.656
45
.651
46
.650
47
.646
48
.646
49
.644
50
.643
51
.640
52
.638
53
.633
54
.627
55
.626
56
.624
57
.622
58
.617
59
.617
60
.615
61
.611
62
.610
63
.607
64
.607
65
.604
66
.601
67
.602
68
.601
69
.598
70
.598
71
.598
72
.597
73
.597
74
.596
75
.588
76
.588
77
.588
78
.587
79
.587
80
.587
81
.586
82
.586
83
.585
84
.581
85
.579
86
.579
87
.579
88
.578
89
.578
90
.577
91
.576
92
.576
93
.575
94
.573
95
.573
96
.571
97
.570
98
.570
99
.570
100
.570
101
.568
102
.567
103
.567
104
.564
105
.565
106
.564
107
.563
108
.561
109
.560
110
.559
111
.559
112
.559
113
.556
114
.553
115
.552
116
.550
117
.550
118
.548
119
.548
120
.548
121
.547
122
.545
123
.545
124
.544
125
.544
126
.542
127
.542
128
.541
129
.539
130
.538
131
.536
132
.536
133
.536
134
.535
135
.533
136
.532
137
.531
138
.530
139
.530
140
.529
141
.528
142
.528
143
.526
144
.527
145
.524
146
.524
147
.524
148
.524
149
.522
150
.519
151
.519
152
.517
153
.517
154
.516
155
.516
156
.514
157
.514
158
.512
159
.511
160
.512
161
.511
162
.509
163
.509
164
.508
165
.504
166
.503
167
.503
168
.501
169
.502
170
.501
171
.501
172
.499
173
.499
174
.498
175
.496
176
.493
177
.493
178
.493
179
.492
180
.491
181
.491
182
.490
183
.490
184
.487
185
.486
186
.485
187
.484
188
.484
189
.482
190
.481
191
.480
192
.480
193
.479
194
.479
195
.478
196
.477
197
.477
198
.476
199
.475
200
.472
201
.470
202
.469
203
.469
204
.468
205
.469
206
.468
207
.467
208
.465
209
.462
210
.460
211
.458
212
.457
213
.457
214
.457
215
.453
216
.453
217
.452
218
.451
219
.450
220
.449
221
.448
222
.445
223
.444
224
.443
225
.441
226
.441
227
.440
228
.440
229
.440
230
.439
231
.439
232
.436
233
.436
234
.434
235
.433
236
.432
237
.429
238
.429
239
.426
240
.421
241
.421
242
.420
243
.420
244
.418
245
.413
246
.412
247
.410
248
.411
249
.410
250
.410
251
.409
252
.408
253
.408
254
.407
255
.407
256
.405
257
.404
258
.403
259
.403
260
.403
261
.402
262
.402
263
.397
264
.394
265
.388
266
.387
267
.387
268
.387
269
.387
270
.387
271
.387
272
.387
273
.387
274
.387
275
.386
276
.385
277
.383
278
.382
279
.378
280
.378
281
.378
282
.376
283
.374
284
.371
285
.369
286
.368
287
.366
288
.365
289
.363
290
.362
291
.359
292
.358
293
.351
294
.348
295
.347
296
.346
297
.341
298
.340
299
.340
300
.339
301
.338
302
.338
303
.336
304
.335
305
.334
306
.334
307
.333
308
.332
309
.329
310
.329
311
.329
312
.328
313
.328
314
.328
315
.327
316
.326
317
.321
318
.318
319
.318
320
.316
321
.315
322
.313
323
.313
324
.312
325
.311
326
.309
327
.308
328
.308
329
.307
330
.303
331
.302
332
.301
333
.299
334
.298
335
.297
336
.297
337
.297
338
.297
339
.295
340
.295
341
.293
342
.293
343
.291
344
.290
345
.290
346
.289
347
.288
348
.288
349
.281
350
.281
351
.280
352
.278
353
.276
354
.273
355
.272
356
.272
357
.271
358
.271
359
.271
360
.271
361
.263
362
.253
363
.252
364
.248
365
.245
366
.199
367
.198
368
.198
369
.198
370
.198
371
.199
372
.198
373
.198
374
.198
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

Benchmark bibtex

None

Ceiling

0.96.

Note that scores are relative to this ceiling.

Data: Marques2020_Ringach2002

Metric: modulation_ratio