Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021contrast-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.771
2
.731
3
.718
4
.718
5
.709
6
.708
7
.696
8
.688
9
.658
10
.647
11
.635
12
.632
13
.631
14
.623
15
.621
16
.617
17
.617
18
.606
19
.598
20
.590
21
.581
22
.577
23
.574
24
.568
25
.565
26
.563
27
.562
28
.555
29
.554
30
.547
31
.544
32
.544
33
.540
34
.533
35
.511
36
.507
37
.506
38
.503
39
.503
40
.496
41
.492
42
.481
43
.478
44
.476
45
.460
46
.456
47
.452
48
.445
49
.433
50
.431
51
.430
52
.429
53
.418
54
.416
55
.413
56
.403
57
.400
58
.399
59
.397
60
.376
61
.370
62
.367
63
.351
64
.349
65
.347
66
.347
67
.345
68
.344
69
.340
70
.335
71
.332
72
.329
73
.328
74
.324
75
.322
76
.317
77
.309
78
.308
79
.308
80
.302
81
.301
82
.294
83
.283
84
.276
85
.274
86
.271
87
.269
88
.265
89
.261
90
.260
91
.254
92
.253
93
.253
94
.250
95
.246
96
.242
97
.241
98
.240
99
.237
100
.229
101
.229
102
.228
103
.221
104
.221
105
.221
106
.221
107
.220
108
.219
109
.216
110
.215
111
.206
112
.204
113
.200
114
.200
115
.193
116
.191
117
.190
118
.186
119
.184
120
.182
121
.182
122
.182
123
.181
124
.179
125
.178
126
.176
127
.176
128
.171
129
.171
130
.166
131
.166
132
.166
133
.166
134
.163
135
.158
136
.158
137
.156
138
.156
139
.156
140
.155
141
.155
142
.155
143
.155
144
.154
145
.152
146
.152
147
.151
148
.148
149
.147
150
.147
151
.147
152
.145
153
.144
154
.143
155
.140
156
.140
157
.139
158
.139
159
.135
160
.133
161
.131
162
.131
163
.125
164
.123
165
.123
166
.123
167
.123
168
.123
169
.123
170
.123
171
.123
172
.123
173
.123
174
.123
175
.122
176
.121
177
.121
178
.120
179
.120
180
.120
181
.119
182
.119
183
.119
184
.118
185
.117
186
.116
187
.115
188
.114
189
.113
190
.113
191
.113
192
.113
193
.113
194
.110
195
.109
196
.108
197
.108
198
.107
199
.107
200
.107
201
.106
202
.106
203
.106
204
.106
205
.105
206
.103
207
.102
208
.102
209
.101
210
.101
211
.101
212
.099
213
.097
214
.096
215
.094
216
.094
217
.094
218
.093
219
.091
220
.088
221
.088
222
.087
223
.085
224
.083
225
.081
226
.081
227
.081
228
.080
229
.079
230
.079
231
.075
232
.074
233
.072
234
.072
235
.071
236
.070
237
.070
238
.070
239
.070
240
.069
241
.069
242
.064
243
.058
244
.056
245
.054
246
.052
247
.052
248
.050
249
.050
250
.049
251
.049
252
.048
253
.047
254
.046
255
.045
256
.044
257
.044
258
.044
259
.044
260
.044
261
.043
262
.043
263
.038
264
.037
265
.035
266
.033
267
.033
268
.033
269
.032
270
.030
271
.025
272
.025
273
.024
274
.024
275
.022
276
.022
277
.022
278
.021
279
.020
280
.020
281
.020
282
.020
283
.019
284
.018
285
.018
286
.017
287
.017
288
.016
289
.016
290
.016
291
.015
292
.015
293
.014
294
.013
295
.013
296
.012
297
.012
298
.011
299
.008
300
.006
301
.006
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.44.

Note that scores are relative to this ceiling.

Data: Geirhos2021contrast

Metric: error_consistency