Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021eidolonI-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.789
2
.783
3
.777
4
.776
5
.731
6
.724
7
.715
8
.698
9
.689
10
.677
11
.667
12
.663
13
.661
14
.655
15
.651
16
.647
17
.646
18
.638
19
.637
20
.637
21
.636
22
.629
23
.629
24
.621
25
.619
26
.619
27
.619
28
.615
29
.614
30
.610
31
.607
32
.603
33
.593
34
.593
35
.584
36
.583
37
.582
38
.577
39
.575
40
.574
41
.574
42
.567
43
.556
44
.553
45
.551
46
.549
47
.546
48
.541
49
.541
50
.537
51
.529
52
.527
53
.527
54
.524
55
.522
56
.520
57
.519
58
.513
59
.513
60
.512
61
.505
62
.499
63
.498
64
.497
65
.492
66
.491
67
.487
68
.482
69
.481
70
.476
71
.476
72
.472
73
.471
74
.470
75
.464
76
.459
77
.459
78
.459
79
.456
80
.453
81
.448
82
.446
83
.445
84
.443
85
.443
86
.443
87
.442
88
.436
89
.435
90
.432
91
.432
92
.431
93
.430
94
.429
95
.424
96
.417
97
.417
98
.416
99
.413
100
.412
101
.409
102
.408
103
.406
104
.403
105
.401
106
.400
107
.400
108
.400
109
.400
110
.394
111
.393
112
.384
113
.383
114
.378
115
.377
116
.371
117
.367
118
.363
119
.359
120
.355
121
.355
122
.354
123
.350
124
.349
125
.346
126
.344
127
.341
128
.338
129
.336
130
.336
131
.335
132
.334
133
.333
134
.331
135
.329
136
.328
137
.327
138
.326
139
.325
140
.324
141
.324
142
.318
143
.318
144
.317
145
.309
146
.304
147
.301
148
.299
149
.297
150
.297
151
.297
152
.296
153
.295
154
.295
155
.293
156
.291
157
.290
158
.288
159
.287
160
.287
161
.286
162
.281
163
.281
164
.281
165
.281
166
.281
167
.281
168
.281
169
.281
170
.281
171
.281
172
.281
173
.281
174
.281
175
.277
176
.276
177
.274
178
.272
179
.269
180
.264
181
.260
182
.256
183
.255
184
.253
185
.252
186
.251
187
.250
188
.249
189
.247
190
.245
191
.243
192
.242
193
.242
194
.242
195
.241
196
.239
197
.238
198
.235
199
.230
200
.229
201
.223
202
.223
203
.222
204
.218
205
.217
206
.213
207
.210
208
.210
209
.208
210
.208
211
.208
212
.206
213
.204
214
.198
215
.197
216
.196
217
.196
218
.194
219
.192
220
.188
221
.182
222
.181
223
.180
224
.180
225
.180
226
.179
227
.179
228
.171
229
.169
230
.168
231
.164
232
.161
233
.161
234
.160
235
.160
236
.159
237
.159
238
.156
239
.156
240
.150
241
.148
242
.143
243
.141
244
.140
245
.140
246
.138
247
.132
248
.132
249
.131
250
.131
251
.129
252
.126
253
.126
254
.125
255
.122
256
.120
257
.120
258
.113
259
.113
260
.111
261
.107
262
.098
263
.097
264
.097
265
.094
266
.094
267
.094
268
.093
269
.089
270
.085
271
.085
272
.085
273
.085
274
.084
275
.084
276
.077
277
.077
278
.070
279
.063
280
.059
281
.058
282
.058
283
.057
284
.056
285
.055
286
.051
287
.044
288
.042
289
.041
290
.038
291
.036
292
.029
293
.015
294
.014
295
.013
296
.009
297
.008
298
.008
299
.004
300
.002
301
.002
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.39.

Note that scores are relative to this ceiling.

Data: Geirhos2021eidolonI

Metric: error_consistency