Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021eidolonII-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.732
2
.703
3
.699
4
.696
5
.692
6
.680
7
.674
8
.665
9
.664
10
.662
11
.662
12
.659
13
.656
14
.650
15
.650
16
.646
17
.646
18
.643
19
.640
20
.635
21
.632
22
.630
23
.626
24
.625
25
.624
26
.622
27
.617
28
.613
29
.613
30
.613
31
.610
32
.603
33
.602
34
.597
35
.590
36
.588
37
.582
38
.578
39
.577
40
.569
41
.564
42
.559
43
.559
44
.558
45
.558
46
.555
47
.549
48
.547
49
.546
50
.540
51
.538
52
.535
53
.534
54
.534
55
.527
56
.524
57
.522
58
.520
59
.519
60
.518
61
.515
62
.513
63
.512
64
.509
65
.503
66
.501
67
.501
68
.496
69
.495
70
.491
71
.482
72
.481
73
.477
74
.475
75
.473
76
.470
77
.469
78
.465
79
.465
80
.463
81
.458
82
.455
83
.454
84
.454
85
.453
86
.453
87
.451
88
.448
89
.445
90
.443
91
.433
92
.423
93
.423
94
.421
95
.421
96
.416
97
.416
98
.414
99
.411
100
.410
101
.405
102
.401
103
.399
104
.399
105
.394
106
.379
107
.379
108
.375
109
.371
110
.371
111
.366
112
.365
113
.364
114
.363
115
.361
116
.361
117
.359
118
.359
119
.358
120
.354
121
.351
122
.350
123
.345
124
.342
125
.337
126
.331
127
.330
128
.329
129
.329
130
.329
131
.329
132
.329
133
.327
134
.325
135
.320
136
.317
137
.317
138
.315
139
.314
140
.313
141
.313
142
.313
143
.311
144
.311
145
.308
146
.304
147
.302
148
.299
149
.298
150
.298
151
.297
152
.296
153
.296
154
.294
155
.294
156
.289
157
.289
158
.287
159
.287
160
.286
161
.285
162
.279
163
.278
164
.274
165
.270
166
.270
167
.267
168
.266
169
.266
170
.265
171
.260
172
.260
173
.258
174
.257
175
.256
176
.255
177
.254
178
.252
179
.252
180
.252
181
.252
182
.252
183
.252
184
.252
185
.252
186
.252
187
.252
188
.252
189
.252
190
.250
191
.247
192
.246
193
.236
194
.235
195
.235
196
.232
197
.226
198
.226
199
.226
200
.226
201
.225
202
.224
203
.224
204
.223
205
.223
206
.216
207
.216
208
.215
209
.206
210
.206
211
.204
212
.198
213
.196
214
.195
215
.191
216
.190
217
.189
218
.189
219
.182
220
.182
221
.180
222
.180
223
.179
224
.178
225
.178
226
.174
227
.174
228
.173
229
.169
230
.166
231
.161
232
.161
233
.158
234
.158
235
.155
236
.154
237
.151
238
.149
239
.145
240
.143
241
.143
242
.143
243
.143
244
.143
245
.143
246
.142
247
.137
248
.136
249
.134
250
.133
251
.130
252
.128
253
.124
254
.124
255
.118
256
.118
257
.116
258
.115
259
.114
260
.114
261
.112
262
.110
263
.109
264
.107
265
.105
266
.105
267
.104
268
.100
269
.098
270
.098
271
.096
272
.089
273
.088
274
.086
275
.086
276
.086
277
.078
278
.075
279
.071
280
.065
281
.065
282
.061
283
.061
284
.058
285
.058
286
.057
287
.053
288
.052
289
.049
290
.049
291
.049
292
.049
293
.048
294
.046
295
.043
296
.042
297
.041
298
.040
299
.039
300
.032
301
.030
302
.030
303
.026
304
.024
305
.024
306
.020
307
.013
308
.010
309
.007
310
.006
311
.003
312
.002
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.45.

Note that scores are relative to this ceiling.

Data: Geirhos2021eidolonII

Metric: error_consistency