Sample stimuli

sample 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9

How to use

from brainscore_vision import load_benchmark
benchmark = load_benchmark("Geirhos2021falsecolour-error_consistency")
score = benchmark(my_model)

Model scores

Min Alignment Max Alignment

Rank

Model

Score

1
.818
2
.804
3
.780
4
.757
5
.756
6
.755
7
.754
8
.752
9
.752
10
.739
11
.738
12
.735
13
.726
14
.708
15
.706
16
.702
17
.699
18
.688
19
.688
20
.682
21
.668
22
.667
23
.648
24
.640
25
.633
26
.622
27
.622
28
.617
29
.610
30
.610
31
.605
32
.599
33
.588
34
.581
35
.580
36
.580
37
.579
38
.572
39
.568
40
.566
41
.564
42
.564
43
.560
44
.559
45
.559
46
.558
47
.554
48
.547
49
.546
50
.542
51
.539
52
.537
53
.536
54
.532
55
.532
56
.531
57
.528
58
.520
59
.519
60
.517
61
.511
62
.507
63
.505
64
.504
65
.497
66
.495
67
.493
68
.493
69
.492
70
.487
71
.486
72
.483
73
.475
74
.471
75
.470
76
.462
77
.461
78
.453
79
.449
80
.447
81
.440
82
.434
83
.429
84
.419
85
.416
86
.409
87
.407
88
.401
89
.392
90
.390
91
.371
92
.368
93
.367
94
.367
95
.364
96
.362
97
.359
98
.356
99
.353
100
.353
101
.353
102
.351
103
.351
104
.348
105
.346
106
.338
107
.338
108
.337
109
.337
110
.336
111
.336
112
.336
113
.336
114
.335
115
.333
116
.333
117
.332
118
.326
119
.324
120
.312
121
.309
122
.309
123
.309
124
.309
125
.306
126
.300
127
.299
128
.299
129
.297
130
.296
131
.295
132
.292
133
.291
134
.289
135
.282
136
.280
137
.269
138
.269
139
.268
140
.267
141
.263
142
.262
143
.257
144
.257
145
.256
146
.256
147
.255
148
.253
149
.252
150
.251
151
.251
152
.249
153
.246
154
.240
155
.238
156
.237
157
.233
158
.231
159
.230
160
.228
161
.226
162
.225
163
.225
164
.223
165
.221
166
.220
167
.219
168
.219
169
.218
170
.218
171
.216
172
.215
173
.212
174
.212
175
.212
176
.209
177
.195
178
.193
179
.193
180
.188
181
.187
182
.183
183
.181
184
.179
185
.175
186
.174
187
.164
188
.163
189
.157
190
.157
191
.155
192
.152
193
.145
194
.144
195
.143
196
.139
197
.137
198
.136
199
.123
200
.119
201
.116
202
.114
203
.113
204
.107
205
.107
206
.106
207
.104
208
.103
209
.101
210
.101
211
.100
212
.092
213
.088
214
.087
215
.086
216
.085
217
.082
218
.073
219
.073
220
.070
221
.069
222
.068
223
.067
224
.066
225
.065
226
.064
227
.064
228
.064
229
.063
230
.056
231
.055
232
.055
233
.055
234
.055
235
.055
236
.055
237
.055
238
.055
239
.055
240
.055
241
.055
242
.055
243
.054
244
.051
245
.049
246
.048
247
.045
248
.045
249
.043
250
.043
251
.043
252
.039
253
.038
254
.037
255
.036
256
.035
257
.035
258
.034
259
.034
260
.034
261
.034
262
.033
263
.031
264
.029
265
.027
266
.027
267
.025
268
.019
269
.019
270
.019
271
.017
272
.016
273
.016
274
.016
275
.016
276
.015
277
.015
278
.014
279
.013
280
.013
281
.012
282
.011
283
.011
284
.010
285
.010
286
.010
287
.010
288
.010
289
.010
290
.010
291
.009
292
.009
293
.009
294
.008
295
.004
296
.004
297
.003
298
.003
299
.003
300
.001
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

Benchmark bibtex

@article{geirhos2021partial,
              title={Partial success in closing the gap between human and machine vision},
              author={Geirhos, Robert and Narayanappa, Kantharaju and Mitzkus, Benjamin and Thieringer, Tizian and Bethge, Matthias and Wichmann, Felix A and Brendel, Wieland},
              journal={Advances in Neural Information Processing Systems},
              volume={34},
              year={2021},
              url={https://openreview.net/forum?id=QkljT4mrfs}
        }

Ceiling

0.44.

Note that scores are relative to this ceiling.

Data: Geirhos2021falsecolour

Metric: error_consistency